import sys, re, os.path from string import Template try: from cStringIO import StringIO except: from StringIO import StringIO ctype2j = { # c : (j, jn, jni, jni code) "" : ("", "long", "jlong", ""), # c-tor "void" : ("void", "void", "void", ""), "bool" : ("boolean", "boolean","jboolean", "Z"), "int" : ("int", "int", "jint", "I"), "long" : ("int", "int", "jint", "I"), "float" : ("float", "float", "jfloat", "F"), "double" : ("double", "double", "jdouble", "D"), "size_t" : ("long", "long", "jlong", "J"), "env" : ("", "", "JNIEnv*", ""), # dummy 'env' "cls" : ("", "", "jclass", ""), # dummy 'cls' # "Mat" : ("Mat", (("size_t", ".nativeObj"),), "*%(n)s", "J"), "Point" : ("Point", (("double", ".x"), ("double", ".y")), "cv::Point((int)%(n)s_x, (int)%(n)s_y)", "DD"), "Point2f" : ("Point", (("double", ".x"), ("double", ".y")), "cv::Point2f((float)%(n)s_x, (float)%(n)s_y)", "DD"), "Point2d" : ("Point", (("double", ".x"), ("double", ".y")), "cv::Point2d(%(n)s_x, %(n)s_y)", "DD"), "Point3i" : ("Point", (("double", ".x"), ("double", ".y"), ("double", ".z")),\ "cv::Point3i((int)%(n)s_x, (int)%(n)s_y, (int)%(n)s_z)", "DDD"), "Point3f" : ("Point", (("double", ".x"), ("double", ".y"), ("double", ".z")),\ "cv::Point3f((float)%(n)s_x, (float)%(n)s_y, (float)%(n)s_z)", "DDD"), "Point3d" : ("Point", (("double", ".x"), ("double", ".y"), ("double", ".z")),\ "cv::Point3d(%(n)s_x, %(n)s_y, %(n)s_z)", "DDD"), "Rect" : ("Rect", (("int", ".x"), ("int", ".y"), ("int", ".width"), ("int", ".height")), \ "cv::Rect(%(n)s_x, %(n)s_y, %(n)s_width, %(n)s_height)", "IIII"), "Size" : ("Size", (("int", ".width"), ("int", ".height")), "cv::Size(%(n)s_width, %(n)s_height)", "II"), "Scalar" : ("Scalar", (("double", ".v0"), ("double", ".v1"), ("double", ".v2"), ("double", ".v3")),\ "cv::Scalar(%(n)s_v0, %(n)s_v1, %(n)s_v2, %(n)s_v3)", "DDDD"), } class ConstInfo(object): def __init__(self, cname, name, val): ## self.name = re.sub(r"^cv\.", "", name).replace(".", "_") self.cname = cname self.name = re.sub(r"^Cv", "", name) #self.name = re.sub(r"([a-z])([A-Z])", r"\1_\2", name) #self.name = self.name.upper() self.value = val class ClassInfo(object): def __init__(self, decl): # [ 'class/struct cname', [bases], [modlist] ] name = decl[0] name = name[name.find(" ")+1:].strip() self.cname = self.name = self.jname = re.sub(r"^cv\.", "", name) self.cname =self.cname.replace(".", "::") self.jname = re.sub(r"^Cv", "", self.jname) self.methods = {} self.consts = [] # using a list to save the occurence order for m in decl[2]: if m.startswith("="): self.jname = m[1:] class ArgInfo(object): def __init__(self, arg_tuple): # [ ctype, name, def val, [mod], argno ] self.ctype = arg_tuple[0] self.name = arg_tuple[1] self.defval = arg_tuple[2] self.out = "/O" in arg_tuple[3] or "/IO" in arg_tuple[3] ## def isbig(self): ## return self.ctype == "Mat" or self.ctype == "vector_Mat" class FuncInfo(object): def __init__(self, decl): # [ funcname, return_ctype, [modifiers], [args] ] name = re.sub(r"^cv\.", "", decl[0]) self.cname = name.replace(".", "::") classname = "" dpos = name.rfind(".") if dpos >= 0: classname = name[:dpos] name = name[dpos+1:] self.classname = classname self.jname = self.name = name if "[" in name: self.jname = "getelem" for m in decl[2]: if m.startswith("="): self.jname = m[1:] self.jn_name = "n_" + self.jname self.jni_name= re.sub(r"_", "_1", self.jn_name) if self.classname: self.jni_name = "00024" + self.classname + "_" + self.jni_name self.static = ["","static"][ "/S" in decl[2] ] self.ctype = decl[1] or "" self.args = [] self.jni_suffix = "__" if self.classname and self.ctype and not self.static: # non-static class methods except c-tors self.jni_suffix += "J" # artifical 'self' for a in decl[3]: ai = ArgInfo(a) self.args.append(ai) self.jni_suffix += ctype2j.get(ai.ctype, ["","","",""])[3] class FuncFamilyInfo(object): def __init__(self, decl): # [ funcname, return_ctype, [modifiers], [args] ] self.funcs = [] self.funcs.append( FuncInfo(decl) ) self.jname = self.funcs[0].jname self.isconstructor = self.funcs[0].name == self.funcs[0].classname def add_func(self, fi): self.funcs.append( fi ) class JavaWrapperGenerator(object): def __init__(self): self.clear() def clear(self): self.classes = { "Mat" : ClassInfo([ 'class Mat', [], [] ]) } self.funcs = {} self.consts = [] # using a list to save the occurence order self.module = "" self.java_code = StringIO() self.cpp_code = StringIO() self.ported_func_counter = 0 self.func_counter = 0 def add_class(self, decl): classinfo = ClassInfo(decl) if classinfo.name in self.classes: print "Generator error: class %s (%s) is duplicated" % \ (classinfo.name, classinfo.cname) sys.exit(-1) self.classes[classinfo.name] = classinfo if classinfo.name in ctype2j: print "Duplicated class: " + classinfo.name sys.exit(-1) ctype2j[classinfo.name] = (classinfo.jname, (("size_t", ".nativeObj"),), "*%(n)s", "J") def add_const(self, decl): # [ "const cname", val, [], [] ] consts = self.consts name = decl[0].replace("const ", "").strip() name = re.sub(r"^cv\.", "", name) cname = name.replace(".", "::") # check if it's a class member dpos = name.rfind(".") if dpos >= 0: classname = name[:dpos] name = name[dpos+1:] if classname in self.classes: consts = self.classes[classname].consts else: # this class isn't wrapped # skipping this const return constinfo = ConstInfo(cname, name, decl[1]) # checking duplication for c in consts: if c.name == constinfo.name: print "Generator error: constant %s (%s) is duplicated" \ % (constinfo.name, constinfo.cname) sys.exit(-1) consts.append(constinfo) def add_func(self, decl): ffi = FuncFamilyInfo(decl) func_map = self.funcs classname = ffi.funcs[0].classname if classname: if classname in self.classes: func_map = self.classes[classname].methods else: print "Generator error: the class %s for method %s is missing" % \ (classname, ffi.jname) sys.exit(-1) if ffi.jname in func_map: func_map[ffi.jname].add_func(ffi.funcs[0]) else: func_map[ffi.jname] = ffi def save(self, path, name, buf): f = open(path + "/" + name, "wt") f.write(buf.getvalue()) f.close() def gen(self, srcfiles, module, output_path): self.clear() self.module = module parser = hdr_parser.CppHeaderParser() # step 1: scan the headers and build more descriptive maps of classes, consts, functions for hdr in srcfiles: decls = parser.parse(hdr) for decl in decls: name = decl[0] if name.startswith("struct") or name.startswith("class"): self.add_class(decl) pass elif name.startswith("const"): self.add_const(decl) else: # function self.add_func(decl) pass # java module header self.java_code.write(\ """package org.opencv; public class %(module)s { //Load the native jni library static { System.loadLibrary("opencv_java"); } public static final int CV_8U = 0, CV_8S = 1, CV_16U = 2, CV_16S = 3, CV_32S = 4, CV_32F = 5, CV_64F = 6, CV_USRTYPE1 = 7, IPL_BORDER_CONSTANT = 0, IPL_BORDER_REPLICATE = 1, IPL_BORDER_REFLECT = 2, IPL_BORDER_WRAP = 3, IPL_BORDER_REFLECT_101 = 4, IPL_BORDER_TRANSPARENT = 5; """ % {"module" : module} ) # cpp module header self.cpp_code.write(\ """// This file is auto-generated, please don't edit! #include """ % {"module" : module}) self.cpp_code.write( "\n".join(['#include "opencv2/%s/%s"' % (module, os.path.basename(f)) \ for f in srcfiles]) ) self.cpp_code.write("\n\n") # step 2: generate the code for global constants self.gen_consts() # step 3: generate the code for all the global functions self.gen_funcs() # step 4: generate code for the classes #self.gen_classes() # !!! tempory disabled !!! # java module tail self.java_code.write("}\n") self.save(output_path, module+".java", self.java_code) self.save(output_path, module+".cpp", self.cpp_code) print "Done %i of %i funcs." % (self.ported_func_counter, self.func_counter) def gen_consts(self): # generate the code for global constants if self.consts: self.java_code.write(""" public static final int """ + """, """.join(["%s = %s" % (c.name, c.value) for c in self.consts]) + \ ";\n\n") def gen_func(self, fi, isoverload): self.func_counter += 1 # java part & cpp part: # // c_decl # e.g: # // void add(Mat src1, Mat src2, Mat dst, Mat mask = Mat(), int dtype = -1) c_decl = "%s %s %s(%s)" % \ ( fi.static, fi.ctype, fi.cname, \ ", ".join(a.ctype + " " + a.name + [""," = "+a.defval][bool(a.defval)] for a in fi.args) ) indent = "" if fi.classname: indent = " " * 4 self.java_code.write( "\n %s// %s\n" % (indent, c_decl) ) self.cpp_code.write( "\n//\n//%s\n//\n" % c_decl ) # check if we 'know' all the types if fi.ctype and fi.ctype!="Mat" and fi.ctype[0].isupper(): # ret val is class, NYI (TODO!) self.java_code.write( " %s// Return type '%s' is not yet supported, skipping the function\n\n"\ % (indent, fi.ctype) ) print "SKIP:", c_decl, "\n\tdue to RET type", fi.ctype return types = [fi.ctype] types.extend([a.ctype for a in fi.args]) for t in types: if t not in ctype2j: self.java_code.write( " %s// Unknown type '%s', skipping the function\n\n" % (indent, t) ) print "SKIP:", c_decl, "\n\tdue to ARG type", t return for a in fi.args: if a.ctype[0].isupper() and a.ctype != "Mat" and a.out: # C++ reference to a class (gcc disallows temp obj reference) self.java_code.write( " %s// Unknown type '%s&', skipping the function\n\n" % (indent, t) ) print "SKIP:", c_decl, "\n\tdue to ARG type", a.ctype + "&" return if fi.cname == "minEnclosingCircle": self.java_code.write( " %s// Temporary skipping the function %s\n\n" % (indent, fi.cname) ) print "SKIP:", c_decl, "\n\tdue to Temporary filtering" return self.ported_func_counter += 1 # java args args = fi.args[:] if args and args[-1].defval: isoverload = True suffix = fi.jni_suffix while True: # java native method args jn_args = [] if fi.classname and fi.ctype and not fi.static: # non-static class method except c-tor jn_args.append(ArgInfo([ "size_t", "nativeObj", "", [], "" ])) # adding 'this' for a in args: if a.ctype[0].isupper(): # Point/Rect/... #"Point" : ("Point", [["int", ".x"], ["int", ".y"]], ...) fields = ctype2j[a.ctype][1] for f in fields: jn_args.append( ArgInfo([ f[0], a.name + f[1], "", [], "" ]) ) else: jn_args.append(a) # jni (cpp) function args jni_args = [ArgInfo([ "env", "env", "", [], "" ]), ArgInfo([ "cls", "cls", "", [], "" ])] if fi.classname and fi.ctype and not fi.static: jni_args.append(ArgInfo([ "size_t", "self", "", [], "" ])) for a in args: if a.ctype[0].isupper(): # Point/Rect/... #"Point" : ("Point", [["int", ".x"], ["int", ".y"]], ...) fields = ctype2j[a.ctype][1] for f in fields: jni_args.append( ArgInfo([ f[0], a.name + f[1].replace(".","_"), "", [], "" ]) ) else: jni_args.append(a) # java part: # private java NATIVE method decl # e.g. # private static native void n_add(long src1, long src2, long dst, long mask, int dtype); jn_type = "" if fi.ctype == "Mat": jn_type = "long" elif fi.ctype[0].isupper(): jn_type = "NYI" # TODO: NYI else: jn_type = ctype2j[fi.ctype][1] self.java_code.write( Template(\ " ${indent}private static native $jn_type $jn_name($jn_args);\n").substitute(\ indent = indent, \ jn_type=jn_type, \ jn_name=fi.jn_name, \ jn_args=", ".join(["%s %s" % (ctype2j[a.ctype][1], a.name.replace(".","_")) for a in jn_args]) ) ); # java part: # public java wrapper method impl (calling native one above) # e.g. # public static void add( Mat src1, Mat src2, Mat dst, Mat mask, int dtype ) # { n_add( src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype ); } impl_code = " return $jn_name($jn_args_call); " if fi.ctype == "void": impl_code = " $jn_name($jn_args_call); " elif fi.ctype == "": # c-tor impl_code = " nativeObj = $jn_name($jn_args_call); " elif fi.ctype in self.classes: # wrapped class impl_code = " return new %s( $jn_name($jn_args_call) ); " % \ self.classes[fi.ctype].jname static = "static" if fi.classname: static = fi.static self.java_code.write( Template(\ " ${indent}public $static $j_type $j_name($j_args)").substitute(\ indent = indent, \ static=static, \ j_type=ctype2j[fi.ctype][0], \ j_name=fi.jname, \ j_args=", ".join(["%s %s" % (ctype2j[a.ctype][0], a.name) for a in args]) \ ) ) self.java_code.write( Template("\n $indent{ " + impl_code + " }\n").substitute(\ indent = indent, \ jn_name=fi.jn_name, \ jn_args_call=", ".join([a.name + ["",".nativeObj"][ctype2j[a.ctype][0]=="Mat"] for a in jn_args])\ ) ) # cpp part: # jni_func(..) { return cv_func(..); } ret = "return " if fi.ctype == "void": ret = "" elif fi.ctype == "Mat": ret = "return (jlong) new cv::Mat" elif fi.ctype[0].isupper(): ret = NYI # NYI cvname = "cv::" + fi.name j2cvargs = [] if fi.classname: if not fi.ctype: # c-tor cvname = "(jlong) new cv::" + fi.classname elif fi.static: cvname = "cv::%s::%s" % (fi.classname, fi.name) else: cvname = "%s->%s" % ("me", fi.name) j2cvargs.append(\ "cv::%s* me = (cv::%s*) self; //TODO: check for NULL" % \ (fi.classname, fi.classname) \ ) cvargs = [] for a in args: cva = a.name if a.ctype[0].isupper(): # Point/Rect/... # "Point" : ("Point", (("int", ".x"), ("int", ".y")), "Point(%(n)s_x, %(n)s_y)", "II") # Point(p_x, p_y) cva = ctype2j[a.ctype][2] % {"n" : a.name} if a.ctype == "Mat": j2cvargs.append("cv::Mat* %s = (cv::Mat*) %s_nativeObj; //TODO: check for NULL"\ % (a.name, a.name)) pass cvargs.append(cva) rtype = "NYI" if fi.ctype == "Mat": rtype = "jlong" elif fi.ctype[0].isupper(): rtype = "NYI" # TODO: NYI else: rtype = ctype2j[fi.ctype][2] self.cpp_code.write ( Template( \ """ #ifdef __cplusplus extern "C" { #endif JNIEXPORT $rtype JNICALL Java_org_opencv_${module}_$fname ($args); #ifdef __cplusplus } #endif JNIEXPORT $rtype JNICALL Java_org_opencv_${module}_$fname ($args) { $j2cv $ret( $cvname( $cvargs ) ); } """ ).substitute( \ rtype = rtype, \ module = self.module, \ fname = fi.jni_name + ["",suffix][isoverload], \ args = ", ".join(["%s %s" % (ctype2j[a.ctype][2], a.name) for a in jni_args]), \ j2cv = "\n ".join([a for a in j2cvargs]), \ ret = ret, \ cvname = cvname, \ cvargs = ", ".join([a for a in cvargs]), \ ) ) # processing args with default values if args and args[-1].defval: a = args.pop() suffix = suffix[0:-len(ctype2j[a.ctype][3])] else: break def gen_funcs(self): # generate the code for all the global functions indent = "\t" fflist = self.funcs.items() fflist.sort() for name, ffi in fflist: assert not ffi.funcs[0].classname, "Error: global func is a class member - "+name for fi in ffi.funcs: self.gen_func(fi, len(ffi.funcs)>1) def gen_classes(self): # generate code for the classes (their methods and consts) indent = "\t" indent_m = indent + "\t" classlist = self.classes.items() classlist.sort() for name, ci in classlist: self.java_code.write( "\n" + indent + "// class %s" % (ci.cname) + "\n" ) self.java_code.write( indent + "public static class %s {\n\n" % (ci.jname) ) # self self.java_code.write( indent_m + "protected final long nativeObj;\n" ) self.java_code.write( indent_m + "protected %s(long addr) { nativeObj = addr; }\n\n" \ % name ); # constants if ci.consts: prefix = "\n" + indent_m + "\t\t" s = indent_m + "public static final int" + prefix +\ ("," + prefix).join(["%s = %s" % (c.name, c.value) for c in ci.consts]) + ";\n\n" self.java_code.write( s ) # c-tors fflist = ci.methods.items() fflist.sort() for n, ffi in fflist: if ffi.isconstructor: for fi in ffi.funcs: self.gen_func(fi, len(ffi.funcs)>1) self.java_code.write( "\n" ) for n, ffi in fflist: if not ffi.isconstructor: for fi in ffi.funcs: self.gen_func(fi, len(ffi.funcs)>1) self.java_code.write( "\n" + indent + "}\n\n" ) if __name__ == "__main__": if len(sys.argv) < 4: print "Usage:\n", \ os.path.basename(sys.argv[0]), \ " [...]" print "Current args are: ", ", ".join(["'"+a+"'" for a in sys.argv]) exit(0) dstdir = "." hdr_parser_path = os.path.abspath(sys.argv[1]) if hdr_parser_path.endswith(".py"): hdr_parser_path = os.path.dirname(hdr_parser_path) sys.path.append(hdr_parser_path) import hdr_parser module = sys.argv[2] srcfiles = sys.argv[3:] print "Generating module '" + module + "' from headers:\n\t" + "\n\t".join(srcfiles) generator = JavaWrapperGenerator() generator.gen(srcfiles, module, dstdir)