/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; //////////////////////////////////////////////////////////////////////// //////////////////////////////// GpuMat //////////////////////////////// //////////////////////////////////////////////////////////////////////// cv::gpu::GpuMat::GpuMat(Size size_, int type_) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if (size_.height > 0 && size_.width > 0) create(size_.height, size_.width, type_); } cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, const Scalar& s_) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if (rows_ > 0 && cols_ > 0) { create(rows_, cols_, type_); *this = s_; } } cv::gpu::GpuMat::GpuMat(Size size_, int type_, const Scalar& s_) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if (size_.height > 0 && size_.width > 0) { create(size_.height, size_.width, type_); *this = s_; } } cv::gpu::GpuMat::GpuMat(const GpuMat& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { if (refcount) CV_XADD(refcount, 1); } cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert( step >= minstep ); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert( step >= minstep ); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, const Range& rowRange, const Range& colRange) { flags = m.flags; step = m.step; refcount = m.refcount; data = m.data; datastart = m.datastart; dataend = m.dataend; if (rowRange == Range::all()) rows = m.rows; else { CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows ); rows = rowRange.size(); data += step*rowRange.start; } if (colRange == Range::all()) cols = m.cols; else { CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols ); cols = colRange.size(); data += colRange.start*elemSize(); flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; } if( rows == 1 ) flags |= Mat::CONTINUOUS_FLAG; if( refcount ) CV_XADD(refcount, 1); if( rows <= 0 || cols <= 0 ) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, const Rect& roi) : flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), data(m.data + roi.y*step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; data += roi.x*elemSize(); CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows ); if( refcount ) CV_XADD(refcount, 1); if( rows <= 0 || cols <= 0 ) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const Mat& m) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { upload(m); } GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m) { if( this != &m ) { if( m.refcount ) CV_XADD(m.refcount, 1); release(); flags = m.flags; rows = m.rows; cols = m.cols; step = m.step; data = m.data; datastart = m.datastart; dataend = m.dataend; refcount = m.refcount; } return *this; } GpuMat& cv::gpu::GpuMat::operator = (const Mat& m) { upload(m); return *this; } cv::gpu::GpuMat::operator Mat() const { Mat m; download(m); return m; } GpuMat cv::gpu::GpuMat::row(int y) const { return GpuMat(*this, Range(y, y+1), Range::all()); } GpuMat cv::gpu::GpuMat::col(int x) const { return GpuMat(*this, Range::all(), Range(x, x+1)); } GpuMat cv::gpu::GpuMat::rowRange(int startrow, int endrow) const { return GpuMat(*this, Range(startrow, endrow), Range::all()); } GpuMat cv::gpu::GpuMat::rowRange(const Range& r) const { return GpuMat(*this, r, Range::all()); } GpuMat cv::gpu::GpuMat::colRange(int startcol, int endcol) const { return GpuMat(*this, Range::all(), Range(startcol, endcol)); } GpuMat cv::gpu::GpuMat::colRange(const Range& r) const { return GpuMat(*this, Range::all(), r); } void cv::gpu::GpuMat::create(Size size_, int type_) { create(size_.height, size_.width, type_); } void cv::gpu::GpuMat::swap(GpuMat& b) { std::swap( flags, b.flags ); std::swap( rows, b.rows ); std::swap( cols, b.cols ); std::swap( step, b.step ); std::swap( data, b.data ); std::swap( datastart, b.datastart ); std::swap( dataend, b.dataend ); std::swap( refcount, b.refcount ); } void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const { size_t esz = elemSize(), minstep; ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart; CV_DbgAssert( step > 0 ); if( delta1 == 0 ) ofs.x = ofs.y = 0; else { ofs.y = (int)(delta1/step); ofs.x = (int)((delta1 - step*ofs.y)/esz); CV_DbgAssert( data == datastart + ofs.y*step + ofs.x*esz ); } minstep = (ofs.x + cols)*esz; wholeSize.height = (int)((delta2 - minstep)/step + 1); wholeSize.height = std::max(wholeSize.height, ofs.y + rows); wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz); wholeSize.width = std::max(wholeSize.width, ofs.x + cols); } GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright) { Size wholeSize; Point ofs; size_t esz = elemSize(); locateROI( wholeSize, ofs ); int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width); data += (row1 - ofs.y)*step + (col1 - ofs.x)*esz; rows = row2 - row1; cols = col2 - col1; if( esz*cols == step || rows == 1 ) flags |= Mat::CONTINUOUS_FLAG; else flags &= ~Mat::CONTINUOUS_FLAG; return *this; } cv::gpu::GpuMat GpuMat::operator()(Range rowRange, Range colRange) const { return GpuMat(*this, rowRange, colRange); } cv::gpu::GpuMat GpuMat::operator()(const Rect& roi) const { return GpuMat(*this, roi); } bool cv::gpu::GpuMat::isContinuous() const { return (flags & Mat::CONTINUOUS_FLAG) != 0; } size_t cv::gpu::GpuMat::elemSize() const { return CV_ELEM_SIZE(flags); } size_t cv::gpu::GpuMat::elemSize1() const { return CV_ELEM_SIZE1(flags); } int cv::gpu::GpuMat::type() const { return CV_MAT_TYPE(flags); } int cv::gpu::GpuMat::depth() const { return CV_MAT_DEPTH(flags); } int cv::gpu::GpuMat::channels() const { return CV_MAT_CN(flags); } Size cv::gpu::GpuMat::size() const { return Size(cols, rows); } unsigned char* cv::gpu::GpuMat::ptr(int y) { CV_DbgAssert( (unsigned)y < (unsigned)rows ); return data + step*y; } const unsigned char* cv::gpu::GpuMat::ptr(int y) const { CV_DbgAssert( (unsigned)y < (unsigned)rows ); return data + step*y; } GpuMat cv::gpu::GpuMat::t() const { GpuMat tmp; transpose(*this, tmp); return tmp; } GpuMat cv::gpu::createContinuous(int rows, int cols, int type) { GpuMat m; createContinuous(rows, cols, type, m); return m; } void cv::gpu::createContinuous(Size size, int type, GpuMat& m) { createContinuous(size.height, size.width, type, m); } GpuMat cv::gpu::createContinuous(Size size, int type) { GpuMat m; createContinuous(size, type, m); return m; } void cv::gpu::ensureSizeIsEnough(Size size, int type, GpuMat& m) { ensureSizeIsEnough(size.height, size.width, type, m); } #if !defined (HAVE_CUDA) void cv::gpu::GpuMat::upload(const Mat&) { throw_nogpu(); } void cv::gpu::GpuMat::download(cv::Mat&) const { throw_nogpu(); } void cv::gpu::GpuMat::copyTo(GpuMat&) const { throw_nogpu(); } void cv::gpu::GpuMat::copyTo(GpuMat&, const GpuMat&) const { throw_nogpu(); } void cv::gpu::GpuMat::convertTo(GpuMat&, int, double, double) const { throw_nogpu(); } GpuMat& cv::gpu::GpuMat::operator = (const Scalar&) { throw_nogpu(); return *this; } GpuMat& cv::gpu::GpuMat::setTo(const Scalar&, const GpuMat&) { throw_nogpu(); return *this; } GpuMat cv::gpu::GpuMat::reshape(int, int) const { throw_nogpu(); return GpuMat(); } void cv::gpu::GpuMat::create(int, int, int) { throw_nogpu(); } void cv::gpu::GpuMat::release() {} void cv::gpu::createContinuous(int, int, int, GpuMat&) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace matrix_operations { void copy_to_with_mask(const DevMem2D& src, DevMem2D dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0); template void set_to_gpu(const DevMem2D& mat, const T* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const T* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); void convert_gpu(const DevMem2D& src, int sdepth, const DevMem2D& dst, int ddepth, double alpha, double beta, cudaStream_t stream = 0); }}} void cv::gpu::GpuMat::upload(const Mat& m) { CV_DbgAssert(!m.empty()); create(m.size(), m.type()); cudaSafeCall( cudaMemcpy2D(data, step, m.data, m.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) ); } void cv::gpu::GpuMat::upload(const CudaMem& m, Stream& stream) { CV_DbgAssert(!m.empty()); stream.enqueueUpload(m, *this); } void cv::gpu::GpuMat::download(cv::Mat& m) const { CV_DbgAssert(!this->empty()); m.create(size(), type()); cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) ); } void cv::gpu::GpuMat::download(CudaMem& m, Stream& stream) const { CV_DbgAssert(!m.empty()); stream.enqueueDownload(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& m) const { CV_DbgAssert(!this->empty()); m.create(size(), type()); cudaSafeCall( cudaMemcpy2D(m.data, m.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) ); cudaSafeCall( cudaDeviceSynchronize() ); } void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const { if (mask.empty()) { copyTo(mat); } else { mat.create(size(), type()); cv::gpu::matrix_operations::copy_to_with_mask(*this, mat, depth(), mask, channels()); } } namespace { template struct NPPTypeTraits; template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; static void cvt(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type dst_t; static void cvt(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, NPP_RND_NEAR) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; void convertToKernelCaller(const GpuMat& src, GpuMat& dst) { matrix_operations::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0); } } void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double beta ) const { CV_Assert((depth() != CV_64F && CV_MAT_DEPTH(rtype) != CV_64F) || (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))); bool noScale = fabs(alpha-1) < std::numeric_limits::epsilon() && fabs(beta) < std::numeric_limits::epsilon(); if( rtype < 0 ) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); int scn = channels(); int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype); if( sdepth == ddepth && noScale ) { copyTo(dst); return; } GpuMat temp; const GpuMat* psrc = this; if( sdepth != ddepth && psrc == &dst ) psrc = &(temp = *this); dst.create( size(), rtype ); if (!noScale) matrix_operations::convert_gpu(psrc->reshape(1), sdepth, dst.reshape(1), ddepth, alpha, beta); else { typedef void (*convert_caller_t)(const GpuMat& src, GpuMat& dst); static const convert_caller_t convert_callers[8][8][4] = { { {0,0,0,0}, {convertToKernelCaller, convertToKernelCaller, convertToKernelCaller, convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,NppCvt::cvt}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {NppCvt::cvt,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0} }, { {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {convertToKernelCaller,convertToKernelCaller,convertToKernelCaller,convertToKernelCaller}, {0,0,0,0}, {0,0,0,0} }, { {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0} } }; convert_callers[sdepth][ddepth][scn-1](*psrc, dst); } } GpuMat& GpuMat::operator = (const Scalar& s) { setTo(s); return *this; } namespace { template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template void kernelSet(GpuMat& src, const Scalar& s) { Scalar_ sf = s; matrix_operations::set_to_gpu(src, sf.val, src.channels(), 0); } template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void set(GpuMat& src, const Scalar& s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template void kernelSetMask(GpuMat& src, const Scalar& s, const GpuMat& mask) { Scalar_ sf = s; matrix_operations::set_to_gpu(src, sf.val, mask, src.channels(), 0); } } GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask) { CV_Assert(mask.type() == CV_8UC1); CV_Assert((depth() != CV_64F) || (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))); CV_DbgAssert(!this->empty()); NppiSize sz; sz.width = cols; sz.height = rows; if (mask.empty()) { if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0) { cudaSafeCall( cudaMemset2D(data, step, 0, cols * elemSize(), rows) ); return *this; } if (depth() == CV_8U) { int cn = channels(); if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3])) { int val = saturate_cast(s[0]); cudaSafeCall( cudaMemset2D(data, step, val, cols * elemSize(), rows) ); return *this; } } typedef void (*set_caller_t)(GpuMat& src, const Scalar& s); static const set_caller_t set_callers[8][4] = { {NppSet::set,kernelSet,kernelSet,NppSet::set}, {kernelSet,kernelSet,kernelSet,kernelSet}, {NppSet::set,NppSet::set,kernelSet,NppSet::set}, {NppSet::set,NppSet::set,kernelSet,NppSet::set}, {NppSet::set,kernelSet,kernelSet,NppSet::set}, {NppSet::set,kernelSet,kernelSet,NppSet::set}, {kernelSet,kernelSet,kernelSet,kernelSet}, {0,0,0,0} }; set_callers[depth()][channels()-1](*this, s); } else { typedef void (*set_caller_t)(GpuMat& src, const Scalar& s, const GpuMat& mask); static const set_caller_t set_callers[8][4] = { {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {kernelSetMask,kernelSetMask,kernelSetMask,kernelSetMask}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {NppSetMask::set,kernelSetMask,kernelSetMask,NppSetMask::set}, {kernelSetMask,kernelSetMask,kernelSetMask,kernelSetMask}, {0,0,0,0} }; set_callers[depth()][channels()-1](*this, s, mask); } return *this; } GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const { GpuMat hdr = *this; int cn = channels(); if( new_cn == 0 ) new_cn = cn; int total_width = cols * cn; if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 ) new_rows = rows * total_width / new_cn; if( new_rows != 0 && new_rows != rows ) { int total_size = total_width * rows; if( !isContinuous() ) CV_Error( CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed" ); if( (unsigned)new_rows > (unsigned)total_size ) CV_Error( CV_StsOutOfRange, "Bad new number of rows" ); total_width = total_size / new_rows; if( total_width * new_rows != total_size ) CV_Error( CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows" ); hdr.rows = new_rows; hdr.step = total_width * elemSize1(); } int new_width = total_width / new_cn; if( new_width * new_cn != total_width ) CV_Error( CV_BadNumChannels, "The total width is not divisible by the new number of channels" ); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); return hdr; } void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) { _type &= TYPE_MASK; if( rows == _rows && cols == _cols && type() == _type && data ) return; if( data ) release(); CV_DbgAssert( _rows >= 0 && _cols >= 0 ); if( _rows > 0 && _cols > 0 ) { flags = Mat::MAGIC_VAL + _type; rows = _rows; cols = _cols; size_t esz = elemSize(); void *dev_ptr; cudaSafeCall( cudaMallocPitch(&dev_ptr, &step, esz * cols, rows) ); // Single row must be continuous if (rows == 1) step = esz * cols; if (esz * cols == step) flags |= Mat::CONTINUOUS_FLAG; int64 _nettosize = (int64)step*rows; size_t nettosize = (size_t)_nettosize; datastart = data = (uchar*)dev_ptr; dataend = data + nettosize; refcount = (int*)fastMalloc(sizeof(*refcount)); *refcount = 1; } } void cv::gpu::GpuMat::release() { if( refcount && CV_XADD(refcount, -1) == 1 ) { fastFree(refcount); cudaSafeCall( cudaFree(datastart) ); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m) { int area = rows * cols; if (!m.isContinuous() || m.type() != type || m.size().area() != area) m.create(1, area, type); m = m.reshape(0, rows); } void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m) { if (m.type() == type && m.rows >= rows && m.cols >= cols) m = m(Rect(0, 0, cols, rows)); else m.create(rows, cols, type); } #endif /* !defined (HAVE_CUDA) */