/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/photo/denoising.hpp" #include using namespace cv; using namespace std; class CV_DenoisingGrayscaleTest : public cvtest::BaseTest { public: CV_DenoisingGrayscaleTest(); ~CV_DenoisingGrayscaleTest(); protected: void run(int); }; CV_DenoisingGrayscaleTest::CV_DenoisingGrayscaleTest() {} CV_DenoisingGrayscaleTest::~CV_DenoisingGrayscaleTest() {} void CV_DenoisingGrayscaleTest::run( int ) { string folder = string(ts->get_data_path()) + "denoising/"; Mat orig = imread(folder + "lena_noised_gaussian_sigma=10.png", 0); Mat exp = imread(folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png", 0); if (orig.empty() || exp.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } Mat res; fastNlMeansDenoising(orig, res, 7, 21, 10); if (norm(res - exp) > 0) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); } else { ts->set_failed_test_info(cvtest::TS::OK); } } class CV_DenoisingColoredTest : public cvtest::BaseTest { public: CV_DenoisingColoredTest(); ~CV_DenoisingColoredTest(); protected: void run(int); }; CV_DenoisingColoredTest::CV_DenoisingColoredTest() {} CV_DenoisingColoredTest::~CV_DenoisingColoredTest() {} void CV_DenoisingColoredTest::run( int ) { string folder = string(ts->get_data_path()) + "denoising/"; Mat orig = imread(folder + "lena_noised_gaussian_sigma=10.png", 1); Mat exp = imread(folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png", 1); if (orig.empty() || exp.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } Mat res; fastNlMeansDenoisingColored(orig, res, 7, 21, 10, 10); if (norm(res - exp) > 0) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); } else { ts->set_failed_test_info(cvtest::TS::OK); } } class CV_DenoisingGrayscaleMultiTest : public cvtest::BaseTest { public: CV_DenoisingGrayscaleMultiTest(); ~CV_DenoisingGrayscaleMultiTest(); protected: void run(int); }; CV_DenoisingGrayscaleMultiTest::CV_DenoisingGrayscaleMultiTest() {} CV_DenoisingGrayscaleMultiTest::~CV_DenoisingGrayscaleMultiTest() {} void CV_DenoisingGrayscaleMultiTest::run( int ) { string folder = string(ts->get_data_path()) + "denoising/"; const int imgs_count = 3; vector src_imgs(imgs_count); src_imgs[0] = imread(folder + "lena_noised_gaussian_sigma=20_multi_0.png", 0); src_imgs[1] = imread(folder + "lena_noised_gaussian_sigma=20_multi_1.png", 0); src_imgs[2] = imread(folder + "lena_noised_gaussian_sigma=20_multi_2.png", 0); Mat exp = imread(folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png", 0); bool have_empty_src = false; for (int i = 0; i < imgs_count; i++) { have_empty_src |= src_imgs[i].empty(); } if (have_empty_src || exp.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } Mat res; fastNlMeansDenoisingMulti(src_imgs, imgs_count / 2, imgs_count, res, 7, 21, 15); if (norm(res - exp) > 0) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); } else { ts->set_failed_test_info(cvtest::TS::OK); } } class CV_DenoisingColoredMultiTest : public cvtest::BaseTest { public: CV_DenoisingColoredMultiTest(); ~CV_DenoisingColoredMultiTest(); protected: void run(int); }; CV_DenoisingColoredMultiTest::CV_DenoisingColoredMultiTest() {} CV_DenoisingColoredMultiTest::~CV_DenoisingColoredMultiTest() {} void CV_DenoisingColoredMultiTest::run( int ) { string folder = string(ts->get_data_path()) + "denoising/"; const int imgs_count = 3; vector src_imgs(imgs_count); src_imgs[0] = imread(folder + "lena_noised_gaussian_sigma=20_multi_0.png", 1); src_imgs[1] = imread(folder + "lena_noised_gaussian_sigma=20_multi_1.png", 1); src_imgs[2] = imread(folder + "lena_noised_gaussian_sigma=20_multi_2.png", 1); Mat exp = imread(folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png", 1); bool have_empty_src = false; for (int i = 0; i < imgs_count; i++) { have_empty_src |= src_imgs[i].empty(); } if (have_empty_src || exp.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } Mat res; fastNlMeansDenoisingColoredMulti(src_imgs, imgs_count / 2, imgs_count, res, 7, 21, 10, 15); if (norm(res - exp) > 0) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); } else { ts->set_failed_test_info(cvtest::TS::OK); } } TEST(Imgproc_DenoisingGrayscale, regression) { CV_DenoisingGrayscaleTest test; test.safe_run(); } TEST(Imgproc_DenoisingColored, regression) { CV_DenoisingColoredTest test; test.safe_run(); } TEST(Imgproc_DenoisingGrayscaleMulti, regression) { CV_DenoisingGrayscaleMultiTest test; test.safe_run(); } TEST(Imgproc_DenoisingColoredMulti, regression) { CV_DenoisingColoredMultiTest test; test.safe_run(); }