#include #define HAVE_CUDA 1 #include #include #include #include #include #include static void printOsInfo() { #if defined _WIN32 # if defined _WIN64 printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"); fflush(stdout); # else printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"); fflush(stdout); # endif #elif defined linux # if defined _LP64 printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"); fflush(stdout); # else printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"); fflush(stdout); # endif #elif defined __APPLE__ # if defined _LP64 printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"); fflush(stdout); # else printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"); fflush(stdout); # endif #endif } static void printCudaInfo() { const int deviceCount = cv::gpu::getCudaEnabledDeviceCount(); printf("[----------]\n"); fflush(stdout); printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount); fflush(stdout); printf("[----------]\n"); fflush(stdout); for (int i = 0; i < deviceCount; ++i) { cv::gpu::DeviceInfo info(i); printf("[----------]\n"); fflush(stdout); printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()); fflush(stdout); printf("[ ] \tCompute capability: %d.%d\n", info.majorVersion(), info.minorVersion()); fflush(stdout); printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()); fflush(stdout); printf("[ ] \tTotal memory: %d Mb\n", static_cast(static_cast(info.totalMemory() / 1024.0) / 1024.0)); fflush(stdout); printf("[ ] \tFree memory: %d Mb\n", static_cast(static_cast(info.freeMemory() / 1024.0) / 1024.0)); fflush(stdout); if (!info.isCompatible()) printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n"); printf("[----------]\n"); fflush(stdout); } } int main(int argc, char* argv[]) { printOsInfo(); printCudaInfo(); perf::Regression::Init("nv_perf_test"); perf::TestBase::Init(argc, argv); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } ////////////////////////////////////////////////////////// // Tests #define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name #define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name DEF_PARAM_TEST_1(Depth, perf::MatDepth); PERF_TEST_P(Depth, GoodFeaturesToTrack, testing::Values(CV_8U, CV_16U)) { declare.time(60); const int depth = GetParam(); const int maxCorners = 5000; const double qualityLevel = 0.05; const int minDistance = 5; const int blockSize = 3; const bool useHarrisDetector = true; const double k = 0.05; const std::string fileName = "im1_1280x800.jpg"; cv::Mat src = cv::imread(fileName, cv::IMREAD_GRAYSCALE); if (src.empty()) FAIL() << "Unable to load source image [" << fileName << "]"; if (depth != CV_8U) src.convertTo(src, depth); cv::Mat mask(src.size(), CV_8UC1, cv::Scalar::all(1)); mask(cv::Rect(0, 0, 100, 100)).setTo(cv::Scalar::all(0)); if (PERF_RUN_GPU()) { cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, k); cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat d_mask(mask); cv::gpu::GpuMat d_pts; d_detector(d_src, d_pts, d_mask); TEST_CYCLE() { d_detector(d_src, d_pts, d_mask); } } else { cv::Mat pts; cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k); TEST_CYCLE() { cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k); } } SANITY_CHECK(0); } DEF_PARAM_TEST(Depth_GraySource, perf::MatDepth, bool); PERF_TEST_P(Depth_GraySource, PyrLKOpticalFlowSparse, testing::Combine(testing::Values(CV_8U, CV_16U), testing::Bool())) { declare.time(60); const int depth = std::tr1::get<0>(GetParam()); const bool graySource = std::tr1::get<1>(GetParam()); // PyrLK params const cv::Size winSize(15, 15); const int maxLevel = 5; const cv::TermCriteria criteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01); // GoodFeaturesToTrack params const int maxCorners = 5000; const double qualityLevel = 0.05; const int minDistance = 5; const int blockSize = 3; const bool useHarrisDetector = true; const double k = 0.05; const std::string fileName1 = "im1_1280x800.jpg"; const std::string fileName2 = "im2_1280x800.jpg"; cv::Mat src1 = cv::imread(fileName1, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); if (src1.empty()) FAIL() << "Unable to load source image [" << fileName1 << "]"; cv::Mat src2 = cv::imread(fileName2, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); if (src2.empty()) FAIL() << "Unable to load source image [" << fileName2 << "]"; cv::Mat gray_src; if (graySource) gray_src = src1; else cv::cvtColor(src1, gray_src, cv::COLOR_BGR2GRAY); cv::Mat pts; cv::goodFeaturesToTrack(gray_src, pts, maxCorners, qualityLevel, minDistance, cv::noArray(), blockSize, useHarrisDetector, k); if (depth != CV_8U) { src1.convertTo(src1, depth); src2.convertTo(src2, depth); } if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_src1(src1); cv::gpu::GpuMat d_src2(src2); cv::gpu::GpuMat d_pts(pts.reshape(2, 1)); cv::gpu::GpuMat d_nextPts; cv::gpu::GpuMat d_status; cv::gpu::PyrLKOpticalFlow d_pyrLK; d_pyrLK.winSize = winSize; d_pyrLK.maxLevel = maxLevel; d_pyrLK.iters = criteria.maxCount; d_pyrLK.useInitialFlow = false; d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status); TEST_CYCLE() { d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status); } } else { cv::Mat nextPts; cv::Mat status; cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria); TEST_CYCLE() { cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria); } } SANITY_CHECK(0); } DEF_PARAM_TEST_1(Depth, perf::MatDepth); PERF_TEST_P(Depth, FarnebackOpticalFlow, testing::Values(CV_8U, CV_16U)) { declare.time(60); const int depth = GetParam(); const double pyrScale = 0.5; const int numLevels = 6; const int winSize = 7; const int numIters = 15; const int polyN = 7; const double polySigma = 1.5; const int flags = cv::OPTFLOW_USE_INITIAL_FLOW; const std::string fileName1 = "im1_1280x800.jpg"; const std::string fileName2 = "im2_1280x800.jpg"; cv::Mat src1 = cv::imread(fileName1, cv::IMREAD_GRAYSCALE); if (src1.empty()) FAIL() << "Unable to load source image [" << fileName1 << "]"; cv::Mat src2 = cv::imread(fileName2, cv::IMREAD_GRAYSCALE); if (src2.empty()) FAIL() << "Unable to load source image [" << fileName2 << "]"; if (depth != CV_8U) { src1.convertTo(src1, depth); src2.convertTo(src2, depth); } if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_src1(src1); cv::gpu::GpuMat d_src2(src2); cv::gpu::GpuMat d_u(src1.size(), CV_32FC1, cv::Scalar::all(0)); cv::gpu::GpuMat d_v(src1.size(), CV_32FC1, cv::Scalar::all(0)); cv::gpu::FarnebackOpticalFlow d_farneback; d_farneback.pyrScale = pyrScale; d_farneback.numLevels = numLevels; d_farneback.winSize = winSize; d_farneback.numIters = numIters; d_farneback.polyN = polyN; d_farneback.polySigma = polySigma; d_farneback.flags = flags; d_farneback(d_src1, d_src2, d_u, d_v); TEST_CYCLE() { d_farneback(d_src1, d_src2, d_u, d_v); } } else { cv::Mat flow(src1.size(), CV_32FC2, cv::Scalar::all(0)); cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); TEST_CYCLE() { cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); } } SANITY_CHECK(0); }