/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_CUDA //////////////////////////////////////////////////////////////////////////////// // Add_Array PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Add_Array, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::add(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); cv::add(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, testing::Values(1, 2, 3, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Add_Scalar PARAM_TEST_CASE(Add_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Add_Scalar, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(0, 255); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::add(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); cv::add(mat, val, dst_gold, mask, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Subtract_Array PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Subtract_Array, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::subtract(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); cv::subtract(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, testing::Values(1, 2, 3, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Subtract_Scalar PARAM_TEST_CASE(Subtract_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Subtract_Scalar, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(0, 255); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::subtract(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); cv::subtract(mat, val, dst_gold, mask, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Multiply_Array PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Multiply_Array, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); cv::Mat dst_gold; cv::multiply(mat1, mat2, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, 1.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, testing::Values(1, 2, 3, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Multiply_Array_Special_Case PARAM_TEST_CASE(Multiply_Array_Special_Case, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Multiply_Array_Special_Case, _8UC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_8UC4); cv::Mat mat2 = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4b* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4b* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4b val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4b actual = dst_row[x]; cv::Vec4b gold; gold[0] = cv::saturate_cast(val1[0] * val2); gold[1] = cv::saturate_cast(val1[1] * val2); gold[2] = cv::saturate_cast(val1[2] * val2); gold[3] = cv::saturate_cast(val1[3] * val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } TEST_P(Multiply_Array_Special_Case, _16SC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_16SC4); cv::Mat mat2 = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4s* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4s* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4s val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4s actual = dst_row[x]; cv::Vec4s gold; gold[0] = cv::saturate_cast(val1[0] * val2); gold[1] = cv::saturate_cast(val1[1] * val2); gold[2] = cv::saturate_cast(val1[2] * val2); gold[3] = cv::saturate_cast(val1[3] * val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array_Special_Case, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Multiply_Scalar PARAM_TEST_CASE(Multiply_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Multiply_Scalar, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(0, 255); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); cv::gpu::multiply(loadMat(mat, useRoi), val, dst, scale, depth.second); cv::Mat dst_gold; cv::multiply(mat, val, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Array PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Divide_Array, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype, 1.0, 255.0); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); cv::Mat dst_gold; cv::divide(mat1, mat2, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, 1.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, testing::Values(1, 2, 3, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Array_Special_Case PARAM_TEST_CASE(Divide_Array_Special_Case, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Divide_Array_Special_Case, _8UC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_8UC4); cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4b* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4b* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4b val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4b actual = dst_row[x]; cv::Vec4b gold; gold[0] = cv::saturate_cast(val1[0] / val2); gold[1] = cv::saturate_cast(val1[1] / val2); gold[2] = cv::saturate_cast(val1[2] / val2); gold[3] = cv::saturate_cast(val1[3] / val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } TEST_P(Divide_Array_Special_Case, _16SC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_16SC4); cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4s* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4s* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4s val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4s actual = dst_row[x]; cv::Vec4s gold; gold[0] = cv::saturate_cast(val1[0] / val2); gold[1] = cv::saturate_cast(val1[1] / val2); gold[2] = cv::saturate_cast(val1[2] / val2); gold[3] = cv::saturate_cast(val1[3] / val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array_Special_Case, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Scalar PARAM_TEST_CASE(Divide_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Divide_Scalar, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(1.0, 255.0); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); cv::gpu::divide(loadMat(mat, useRoi), val, dst, scale, depth.second); cv::Mat dst_gold; cv::divide(mat, val, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Scalar_Inv PARAM_TEST_CASE(Divide_Scalar_Inv, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Divide_Scalar_Inv, Accuracy) { if (depth.first == CV_64F || depth.second == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } double scale = randomDouble(0.0, 255.0); cv::Mat mat = randomMat(size, depth.first, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); cv::gpu::divide(scale, loadMat(mat, useRoi), dst, depth.second); cv::Mat dst_gold; cv::divide(scale, mat, dst_gold, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar_Inv, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // AbsDiff PARAM_TEST_CASE(AbsDiff, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(AbsDiff, Array) { if (depth == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::Mat dst_gold; cv::absdiff(src1, src2, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(AbsDiff, Scalar) { if (depth == CV_64F) { if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) return; } cv::Mat src = randomMat(size, depth); cv::Scalar val = randomScalar(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::absdiff(loadMat(src, useRoi), val, dst); cv::Mat dst_gold; cv::absdiff(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5); } INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Abs PARAM_TEST_CASE(Abs, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Abs, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::abs(loadMat(src, useRoi), dst); cv::Mat dst_gold = cv::abs(src); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Abs, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Sqr PARAM_TEST_CASE(Sqr, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Sqr, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::sqr(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::multiply(src, src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Sqrt namespace { template void sqrtImpl(const cv::Mat& src, cv::Mat& dst) { dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) dst.at(y, x) = static_cast(std::sqrt(static_cast(src.at(y, x)))); } } void sqrtGold(const cv::Mat& src, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); const func_t funcs[] = { sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl }; funcs[src.depth()](src, dst); } } PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Sqrt, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::sqrt(loadMat(src, useRoi), dst); cv::Mat dst_gold; sqrtGold(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Log namespace { template void logImpl(const cv::Mat& src, cv::Mat& dst) { dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) dst.at(y, x) = static_cast(std::log(static_cast(src.at(y, x)))); } } void logGold(const cv::Mat& src, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); const func_t funcs[] = { logImpl, logImpl, logImpl, logImpl, logImpl, logImpl }; funcs[src.depth()](src, dst); } } PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Log, Accuracy) { cv::Mat src = randomMat(size, type, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::log(loadMat(src, useRoi), dst); cv::Mat dst_gold; logGold(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-6); } INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Exp PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Exp, Accuracy) { cv::Mat src = randomMat(size, type, 0.0, 10.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::exp(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::exp(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-2); } INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // compare PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int cmp_code; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); cmp_code = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Compare, Accuracy) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi); cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code); cv::Mat dst_gold; cv::compare(src1, src2, dst_gold, cmp_code); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, ALL_CMP_CODES, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Bitwise_Array PARAM_TEST_CASE(Bitwise_Array, cv::gpu::DeviceInfo, cv::Size, MatType) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; cv::Mat src1; cv::Mat src2; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); src1 = randomMat(size, type, 0.0, std::numeric_limits::max()); src2 = randomMat(size, type, 0.0, std::numeric_limits::max()); } }; TEST_P(Bitwise_Array, Not) { cv::gpu::GpuMat dst; cv::gpu::bitwise_not(loadMat(src1), dst); cv::Mat dst_gold = ~src1; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Array, Or) { cv::gpu::GpuMat dst; cv::gpu::bitwise_or(loadMat(src1), loadMat(src2), dst); cv::Mat dst_gold = src1 | src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Array, And) { cv::gpu::GpuMat dst; cv::gpu::bitwise_and(loadMat(src1), loadMat(src2), dst); cv::Mat dst_gold = src1 & src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Array, Xor) { cv::gpu::GpuMat dst; cv::gpu::bitwise_xor(loadMat(src1), loadMat(src2), dst); cv::Mat dst_gold = src1 ^ src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, TYPES(CV_8U, CV_32S, 1, 4))); ////////////////////////////////////////////////////////////////////////////// // Bitwise_Scalar PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, int) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; cv::Mat src; cv::Scalar val; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); src = randomMat(size, CV_MAKE_TYPE(depth, channels)); cv::Scalar_ ival = randomScalar(0.0, 255.0); val = ival; } }; TEST_P(Bitwise_Scalar, Or) { cv::gpu::GpuMat dst; cv::gpu::bitwise_or(loadMat(src), val, dst); cv::Mat dst_gold; cv::bitwise_or(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Scalar, And) { cv::gpu::GpuMat dst; cv::gpu::bitwise_and(loadMat(src), val, dst); cv::Mat dst_gold; cv::bitwise_and(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Scalar, Xor) { cv::gpu::GpuMat dst; cv::gpu::bitwise_xor(loadMat(src), val, dst); cv::Mat dst_gold; cv::bitwise_xor(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), testing::Values(1, 3, 4))); ////////////////////////////////////////////////////////////////////////////// // RShift namespace { template void rhiftImpl(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { const int cn = src.channels(); dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) { for (int c = 0; c < cn; ++c) dst.at(y, x * cn + c) = src.at(y, x * cn + c) >> val.val[c]; } } } void rhiftGold(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst); const func_t funcs[] = { rhiftImpl, rhiftImpl, rhiftImpl, rhiftImpl, rhiftImpl }; funcs[src.depth()](src, val, dst); } } PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(RShift, Accuracy) { int type = CV_MAKE_TYPE(depth, channels); cv::Mat src = randomMat(size, type); cv::Scalar_ val = randomScalar(0.0, 8.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::rshift(loadMat(src, useRoi), val, dst); cv::Mat dst_gold; rhiftGold(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S)), testing::Values(1, 3, 4), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // LShift namespace { template void lhiftImpl(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { const int cn = src.channels(); dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) { for (int c = 0; c < cn; ++c) dst.at(y, x * cn + c) = src.at(y, x * cn + c) << val.val[c]; } } } void lhiftGold(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst); const func_t funcs[] = { lhiftImpl, lhiftImpl, lhiftImpl, lhiftImpl, lhiftImpl }; funcs[src.depth()](src, val, dst); } } PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(LShift, Accuracy) { int type = CV_MAKE_TYPE(depth, channels); cv::Mat src = randomMat(size, type); cv::Scalar_ val = randomScalar(0.0, 8.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::rshift(loadMat(src, useRoi), val, dst); cv::Mat dst_gold; rhiftGold(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, LShift, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), testing::Values(1, 3, 4), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Min PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Min, Accuracy) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::Mat dst_gold = cv::min(src1, src2); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Max PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Max, Accuracy) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::Mat dst_gold = cv::max(src1, src2); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); using namespace cvtest; using namespace testing; PARAM_TEST_CASE(ArithmTestBase, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; cv::Size size; cv::Mat mat1; cv::Mat mat2; cv::Scalar val; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, type, 5, 16, false); mat2 = randomMat(rng, size, type, 5, 16, false); val = cv::Scalar(rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3)); } }; //////////////////////////////////////////////////////////////////////////////// // transpose struct Transpose : ArithmTestBase {}; TEST_P(Transpose, Accuracy) { cv::Mat dst_gold; cv::transpose(mat1, dst_gold); cv::Mat dst; cv::gpu::GpuMat gpuRes; cv::gpu::transpose(loadMat(mat1, useRoi), gpuRes); gpuRes.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine( ALL_DEVICES, Values(CV_8UC1, CV_8UC4, CV_8SC1, CV_8SC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32SC2, CV_32FC1, CV_32FC2, CV_64FC1), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // meanStdDev PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, UseRoi) { cv::gpu::DeviceInfo devInfo; bool useRoi; cv::Size size; cv::Mat mat; cv::Scalar mean_gold; cv::Scalar stddev_gold; virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, CV_8UC1, 1, 255, false); cv::meanStdDev(mat, mean_gold, stddev_gold); } }; TEST_P(MeanStdDev, Accuracy) { cv::Scalar mean; cv::Scalar stddev; cv::gpu::meanStdDev(loadMat(mat, useRoi), mean, stddev); EXPECT_NEAR(mean_gold[0], mean[0], 1e-5); EXPECT_NEAR(mean_gold[1], mean[1], 1e-5); EXPECT_NEAR(mean_gold[2], mean[2], 1e-5); EXPECT_NEAR(mean_gold[3], mean[3], 1e-5); EXPECT_NEAR(stddev_gold[0], stddev[0], 1e-5); EXPECT_NEAR(stddev_gold[1], stddev[1], 1e-5); EXPECT_NEAR(stddev_gold[2], stddev[2], 1e-5); EXPECT_NEAR(stddev_gold[3], stddev[3], 1e-5); } INSTANTIATE_TEST_CASE_P(Arithm, MeanStdDev, Combine( ALL_DEVICES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // normDiff PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, NormCode, UseRoi) { cv::gpu::DeviceInfo devInfo; int normCode; bool useRoi; cv::Size size; cv::Mat mat1, mat2; double norm_gold; virtual void SetUp() { devInfo = GET_PARAM(0); normCode = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_8UC1, 1, 255, false); mat2 = randomMat(rng, size, CV_8UC1, 1, 255, false); norm_gold = cv::norm(mat1, mat2, normCode); } }; TEST_P(NormDiff, Accuracy) { double norm = cv::gpu::norm(loadMat(mat1, useRoi), loadMat(mat2, useRoi), normCode); EXPECT_NEAR(norm_gold, norm, 1e-6); } INSTANTIATE_TEST_CASE_P(Arithm, NormDiff, Combine( ALL_DEVICES, Values((int) cv::NORM_INF, (int) cv::NORM_L1, (int) cv::NORM_L2), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // flip PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, MatType, FlipCode, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; int flip_code; bool useRoi; cv::Size size; cv::Mat mat; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); flip_code = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, type, 1, 255, false); cv::flip(mat, dst_gold, flip_code); } }; TEST_P(Flip, Accuracy) { cv::Mat dst; cv::gpu::GpuMat gpu_res; cv::gpu::flip(loadMat(mat, useRoi), gpu_res, flip_code); gpu_res.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(Arithm, Flip, Combine( ALL_DEVICES, Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values((int)FLIP_BOTH, (int)FLIP_X, (int)FLIP_Y), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // LUT PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; cv::Size size; cv::Mat mat; cv::Mat lut; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, type, 1, 255, false); lut = randomMat(rng, cv::Size(256, 1), CV_8UC1, 100, 200, false); cv::LUT(mat, lut, dst_gold); } }; TEST_P(LUT, Accuracy) { cv::Mat dst; cv::gpu::GpuMat gpu_res; cv::gpu::LUT(loadMat(mat, useRoi), lut, gpu_res); gpu_res.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(Arithm, LUT, Combine( ALL_DEVICES, Values(CV_8UC1, CV_8UC3), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // pow PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; double power; cv::Size size; cv::Mat mat; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, type, 0.0, 100.0, false); if (mat.depth() == CV_32F) power = rng.uniform(1.2f, 3.f); else { int ipower = rng.uniform(2, 8); power = (float)ipower; } cv::pow(mat, power, dst_gold); } }; TEST_P(Pow, Accuracy) { cv::Mat dst; cv::gpu::GpuMat gpu_res; cv::gpu::pow(loadMat(mat, useRoi), power, gpu_res); gpu_res.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 2); } INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine( ALL_DEVICES, Values(CV_32F, CV_32FC3), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // magnitude PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, UseRoi) { cv::gpu::DeviceInfo devInfo; bool useRoi; cv::Size size; cv::Mat mat1, mat2; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); cv::magnitude(mat1, mat2, dst_gold); } }; TEST_P(Magnitude, Accuracy) { cv::Mat dst; cv::gpu::GpuMat gpu_res; cv::gpu::magnitude(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res); gpu_res.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 1e-4); } INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine( ALL_DEVICES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // phase PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, UseRoi) { cv::gpu::DeviceInfo devInfo; bool useRoi; cv::Size size; cv::Mat mat1, mat2; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); cv::phase(mat1, mat2, dst_gold); } }; TEST_P(Phase, Accuracy) { cv::Mat dst; cv::gpu::GpuMat gpu_res; cv::gpu::phase(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res); gpu_res.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 1e-3); } INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine( ALL_DEVICES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // cartToPolar PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, UseRoi) { cv::gpu::DeviceInfo devInfo; bool useRoi; cv::Size size; cv::Mat mat1, mat2; cv::Mat mag_gold; cv::Mat angle_gold; virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); mat2 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); cv::cartToPolar(mat1, mat2, mag_gold, angle_gold); } }; TEST_P(CartToPolar, Accuracy) { cv::Mat mag, angle; cv::gpu::GpuMat gpuMag; cv::gpu::GpuMat gpuAngle; cv::gpu::cartToPolar(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuMag, gpuAngle); gpuMag.download(mag); gpuAngle.download(angle); EXPECT_MAT_NEAR(mag_gold, mag, 1e-4); EXPECT_MAT_NEAR(angle_gold, angle, 1e-3); } INSTANTIATE_TEST_CASE_P(Arithm, CartToPolar, Combine( ALL_DEVICES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // polarToCart PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, UseRoi) { cv::gpu::DeviceInfo devInfo; bool useRoi; cv::Size size; cv::Mat mag; cv::Mat angle; cv::Mat x_gold; cv::Mat y_gold; virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mag = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); angle = randomMat(rng, size, CV_32FC1, 0.0, 2.0 * CV_PI, false); cv::polarToCart(mag, angle, x_gold, y_gold); } }; TEST_P(PolarToCart, Accuracy) { cv::Mat x, y; cv::gpu::GpuMat gpuX; cv::gpu::GpuMat gpuY; cv::gpu::polarToCart(loadMat(mag, useRoi), loadMat(angle, useRoi), gpuX, gpuY); gpuX.download(x); gpuY.download(y); EXPECT_MAT_NEAR(x_gold, x, 1e-4); EXPECT_MAT_NEAR(y_gold, y, 1e-4); } INSTANTIATE_TEST_CASE_P(Arithm, PolarToCart, Combine( ALL_DEVICES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // minMax PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; cv::Size size; cv::Mat mat; cv::Mat mask; double minVal_gold; double maxVal_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, type, 0.0, 127.0, false); mask = randomMat(rng, size, CV_8UC1, 0, 2, false); if (type != CV_8S) { cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, 0, 0, mask); } else { // OpenCV's minMaxLoc doesn't support CV_8S type minVal_gold = std::numeric_limits::max(); maxVal_gold = -std::numeric_limits::max(); for (int i = 0; i < mat.rows; ++i) { const signed char* mat_row = mat.ptr(i); const unsigned char* mask_row = mask.ptr(i); for (int j = 0; j < mat.cols; ++j) { if (mask_row[j]) { signed char val = mat_row[j]; if (val < minVal_gold) minVal_gold = val; if (val > maxVal_gold) maxVal_gold = val; } } } } } }; TEST_P(MinMax, Accuracy) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; double minVal, maxVal; cv::gpu::minMax(loadMat(mat, useRoi), &minVal, &maxVal, loadMat(mask, useRoi)); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); } INSTANTIATE_TEST_CASE_P(Arithm, MinMax, Combine( ALL_DEVICES, Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // minMaxLoc PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; cv::Size size; cv::Mat mat; cv::Mat mask; double minVal_gold; double maxVal_gold; cv::Point minLoc_gold; cv::Point maxLoc_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, type, 0.0, 127.0, false); mask = randomMat(rng, size, CV_8UC1, 0, 2, false); if (type != CV_8S) { cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask); } else { // OpenCV's minMaxLoc doesn't support CV_8S type minVal_gold = std::numeric_limits::max(); maxVal_gold = -std::numeric_limits::max(); for (int i = 0; i < mat.rows; ++i) { const signed char* mat_row = mat.ptr(i); const unsigned char* mask_row = mask.ptr(i); for (int j = 0; j < mat.cols; ++j) { if (mask_row[j]) { signed char val = mat_row[j]; if (val < minVal_gold) { minVal_gold = val; minLoc_gold = cv::Point(j, i); } if (val > maxVal_gold) { maxVal_gold = val; maxLoc_gold = cv::Point(j, i); } } } } } } }; TEST_P(MinMaxLoc, Accuracy) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; double minVal, maxVal; cv::Point minLoc, maxLoc; cv::gpu::minMaxLoc(loadMat(mat, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi)); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); int cmpMinVals = memcmp(mat.data + minLoc_gold.y * mat.step + minLoc_gold.x * mat.elemSize(), mat.data + minLoc.y * mat.step + minLoc.x * mat.elemSize(), mat.elemSize()); int cmpMaxVals = memcmp(mat.data + maxLoc_gold.y * mat.step + maxLoc_gold.x * mat.elemSize(), mat.data + maxLoc.y * mat.step + maxLoc.x * mat.elemSize(), mat.elemSize()); EXPECT_EQ(0, cmpMinVals); EXPECT_EQ(0, cmpMaxVals); } INSTANTIATE_TEST_CASE_P(Arithm, MinMaxLoc, Combine( ALL_DEVICES, Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////// // countNonZero PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; cv::Size size; cv::Mat mat; int n_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); cv::Mat matBase = randomMat(rng, size, CV_8U, 0.0, 1.0, false); matBase.convertTo(mat, type); n_gold = cv::countNonZero(mat); } }; TEST_P(CountNonZero, Accuracy) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; int n = cv::gpu::countNonZero(loadMat(mat, useRoi)); ASSERT_EQ(n_gold, n); } INSTANTIATE_TEST_CASE_P(Arithm, CountNonZero, Combine( ALL_DEVICES, Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // sum PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; bool useRoi; cv::Size size; cv::Mat mat; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat = randomMat(rng, size, CV_8U, 0.0, 10.0, false); } }; TEST_P(Sum, Simple) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; cv::Scalar sum_gold = cv::sum(mat); cv::Scalar sum = cv::gpu::sum(loadMat(mat, useRoi)); EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5); EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5); EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5); EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); } TEST_P(Sum, Abs) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; cv::Scalar sum_gold = cv::norm(mat, cv::NORM_L1); cv::Scalar sum = cv::gpu::absSum(loadMat(mat, useRoi)); EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5); EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5); EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5); EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); } TEST_P(Sum, Sqr) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; cv::Mat sqrmat; multiply(mat, mat, sqrmat); cv::Scalar sum_gold = sum(sqrmat); cv::Scalar sum = cv::gpu::sqrSum(loadMat(mat, useRoi)); EXPECT_NEAR(sum[0], sum_gold[0], mat.size().area() * 1e-5); EXPECT_NEAR(sum[1], sum_gold[1], mat.size().area() * 1e-5); EXPECT_NEAR(sum[2], sum_gold[2], mat.size().area() * 1e-5); EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); } INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine( ALL_DEVICES, Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // addWeighted PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, MatType, MatType, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type1; int type2; int dtype; bool useRoi; cv::Size size; cv::Mat src1; cv::Mat src2; double alpha; double beta; double gamma; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type1 = GET_PARAM(1); type2 = GET_PARAM(2); dtype = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); src1 = randomMat(rng, size, type1, 0.0, 255.0, false); src2 = randomMat(rng, size, type2, 0.0, 255.0, false); alpha = rng.uniform(-10.0, 10.0); beta = rng.uniform(-10.0, 10.0); gamma = rng.uniform(-10.0, 10.0); cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dtype); } }; TEST_P(AddWeighted, Accuracy) { if ((src1.depth() == CV_64F || src2.depth() == CV_64F || dst_gold.depth() == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; cv::Mat dst; cv::gpu::GpuMat dev_dst; cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dev_dst, dtype); dev_dst.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, dtype < CV_32F ? 1.0 : 1e-12); } INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, Combine( ALL_DEVICES, TYPES(CV_8U, CV_64F, 1, 1), TYPES(CV_8U, CV_64F, 1, 1), TYPES(CV_8U, CV_64F, 1, 1), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // reduce PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, MatType, int, ReduceOp, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; int dim; int reduceOp; bool useRoi; cv::Size size; cv::Mat src; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); dim = GET_PARAM(2); reduceOp = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400)); src = randomMat(rng, size, type, 0.0, 255.0, false); cv::reduce(src, dst_gold, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type)); if (dim == 1) { dst_gold.cols = dst_gold.rows; dst_gold.rows = 1; dst_gold.step = dst_gold.cols * dst_gold.elemSize(); } } }; TEST_P(Reduce, Accuracy) { cv::Mat dst; cv::gpu::GpuMat dev_dst; cv::gpu::reduce(loadMat(src, useRoi), dev_dst, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type)); dev_dst.download(dst); double norm = reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? 1e-1 : 0.0; EXPECT_MAT_NEAR(dst_gold, dst, norm); } INSTANTIATE_TEST_CASE_P(Arithm, Reduce, Combine( ALL_DEVICES, Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(0, 1), Values((int)CV_REDUCE_SUM, (int)CV_REDUCE_AVG, (int)CV_REDUCE_MAX, (int)CV_REDUCE_MIN), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // gemm PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, MatType, GemmFlags, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; int flags; bool useRoi; int size; cv::Mat src1; cv::Mat src2; cv::Mat src3; double alpha; double beta; cv::Mat dst_gold; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); flags = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = rng.uniform(100, 200); src1 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false); src2 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false); src3 = randomMat(rng, cv::Size(size, size), type, -10.0, 10.0, false); alpha = rng.uniform(-10.0, 10.0); beta = rng.uniform(-10.0, 10.0); cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags); } }; TEST_P(GEMM, Accuracy) { cv::Mat dst; cv::gpu::GpuMat dev_dst; cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dev_dst, flags); dev_dst.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 1e-1); } INSTANTIATE_TEST_CASE_P(Arithm, GEMM, Combine( ALL_DEVICES, Values(CV_32FC1, CV_32FC2), Values(0, (int) cv::GEMM_1_T, (int) cv::GEMM_2_T, (int) cv::GEMM_3_T), WHOLE_SUBMAT)); #endif // HAVE_CUDA