/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_GPU_MATRIX_OPERATIONS_HPP__ #define __OPENCV_GPU_MATRIX_OPERATIONS_HPP__ namespace cv { namespace gpu { //////////////////////////////////////////////////////////////////////// //////////////////////////////// GpuMat //////////////////////////////// //////////////////////////////////////////////////////////////////////// inline GpuMat::GpuMat() : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) {} inline GpuMat::GpuMat(int _rows, int _cols, int _type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if( _rows > 0 && _cols > 0 ) create( _rows, _cols, _type ); } inline GpuMat::GpuMat(Size _size, int _type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if( _size.height > 0 && _size.width > 0 ) create( _size.height, _size.width, _type ); } inline GpuMat::GpuMat(int _rows, int _cols, int _type, const Scalar& _s) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if(_rows > 0 && _cols > 0) { create(_rows, _cols, _type); *this = _s; } } inline GpuMat::GpuMat(Size _size, int _type, const Scalar& _s) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { if( _size.height > 0 && _size.width > 0 ) { create( _size.height, _size.width, _type ); *this = _s; } } inline GpuMat::GpuMat(const GpuMat& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { if( refcount ) CV_XADD(refcount, 1); } inline GpuMat::GpuMat(int _rows, int _cols, int _type, void* _data, size_t _step) : flags(Mat::MAGIC_VAL + (_type & TYPE_MASK)), rows(_rows), cols(_cols), step(_step), data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend((uchar*)_data) { size_t minstep = cols*elemSize(); if( step == Mat::AUTO_STEP ) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if( rows == 1 ) step = minstep; CV_DbgAssert( step >= minstep ); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step*(rows-1) + minstep; } inline GpuMat::GpuMat(Size _size, int _type, void* _data, size_t _step) : flags(Mat::MAGIC_VAL + (_type & TYPE_MASK)), rows(_size.height), cols(_size.width), step(_step), data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend((uchar*)_data) { size_t minstep = cols*elemSize(); if( step == Mat::AUTO_STEP ) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if( rows == 1 ) step = minstep; CV_DbgAssert( step >= minstep ); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step*(rows-1) + minstep; } inline GpuMat::GpuMat(const GpuMat& m, const Range& rowRange, const Range& colRange) { flags = m.flags; step = m.step; refcount = m.refcount; data = m.data; datastart = m.datastart; dataend = m.dataend; if( rowRange == Range::all() ) rows = m.rows; else { CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows ); rows = rowRange.size(); data += step*rowRange.start; } if( colRange == Range::all() ) cols = m.cols; else { CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols ); cols = colRange.size(); data += colRange.start*elemSize(); flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; } if( rows == 1 ) flags |= Mat::CONTINUOUS_FLAG; if( refcount ) CV_XADD(refcount, 1); if( rows <= 0 || cols <= 0 ) rows = cols = 0; } inline GpuMat::GpuMat(const GpuMat& m, const Rect& roi) : flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), data(m.data + roi.y*step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; data += roi.x*elemSize(); CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows ); if( refcount ) CV_XADD(refcount, 1); if( rows <= 0 || cols <= 0 ) rows = cols = 0; } inline GpuMat::GpuMat(const Mat& m) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { upload(m); } inline GpuMat::~GpuMat() { release(); } inline GpuMat& GpuMat::operator = (const GpuMat& m) { if( this != &m ) { if( m.refcount ) CV_XADD(m.refcount, 1); release(); flags = m.flags; rows = m.rows; cols = m.cols; step = m.step; data = m.data; datastart = m.datastart; dataend = m.dataend; refcount = m.refcount; } return *this; } inline GpuMat& GpuMat::operator = (const Mat& m) { upload(m); return *this; } template inline GpuMat::operator DevMem2D_() const { return DevMem2D_(rows, cols, (T*)data, step); } template inline GpuMat::operator PtrStep_() const { return PtrStep_(static_cast< DevMem2D_ >(*this)); } //CPP: void GpuMat::upload(const Mat& m); inline GpuMat::operator Mat() const { Mat m; download(m); return m; } //CPP void GpuMat::download(cv::Mat& m) const; inline GpuMat GpuMat::row(int y) const { return GpuMat(*this, Range(y, y+1), Range::all()); } inline GpuMat GpuMat::col(int x) const { return GpuMat(*this, Range::all(), Range(x, x+1)); } inline GpuMat GpuMat::rowRange(int startrow, int endrow) const { return GpuMat(*this, Range(startrow, endrow), Range::all()); } inline GpuMat GpuMat::rowRange(const Range& r) const { return GpuMat(*this, r, Range::all()); } inline GpuMat GpuMat::colRange(int startcol, int endcol) const { return GpuMat(*this, Range::all(), Range(startcol, endcol)); } inline GpuMat GpuMat::colRange(const Range& r) const { return GpuMat(*this, Range::all(), r); } inline GpuMat GpuMat::clone() const { GpuMat m; copyTo(m); return m; } //CPP void GpuMat::copyTo( GpuMat& m ) const; //CPP void GpuMat::copyTo( GpuMat& m, const GpuMat& mask ) const; //CPP void GpuMat::convertTo( GpuMat& m, int rtype, double alpha=1, double beta=0 ) const; inline void GpuMat::assignTo( GpuMat& m, int type ) const { if( type < 0 ) m = *this; else convertTo(m, type); } //CPP GpuMat& GpuMat::operator = (const Scalar& s); //CPP GpuMat& GpuMat::setTo(const Scalar& s, const GpuMat& mask=GpuMat()); //CPP GpuMat GpuMat::reshape(int _cn, int _rows=0) const; inline void GpuMat::create(Size _size, int _type) { create(_size.height, _size.width, _type); } //CPP void GpuMat::create(int _rows, int _cols, int _type); //CPP void GpuMat::release(); inline void GpuMat::swap(GpuMat& b) { std::swap( flags, b.flags ); std::swap( rows, b.rows ); std::swap( cols, b.cols ); std::swap( step, b.step ); std::swap( data, b.data ); std::swap( datastart, b.datastart ); std::swap( dataend, b.dataend ); std::swap( refcount, b.refcount ); } inline void GpuMat::locateROI( Size& wholeSize, Point& ofs ) const { size_t esz = elemSize(), minstep; ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart; CV_DbgAssert( step > 0 ); if( delta1 == 0 ) ofs.x = ofs.y = 0; else { ofs.y = (int)(delta1/step); ofs.x = (int)((delta1 - step*ofs.y)/esz); CV_DbgAssert( data == datastart + ofs.y*step + ofs.x*esz ); } minstep = (ofs.x + cols)*esz; wholeSize.height = (int)((delta2 - minstep)/step + 1); wholeSize.height = std::max(wholeSize.height, ofs.y + rows); wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz); wholeSize.width = std::max(wholeSize.width, ofs.x + cols); } inline GpuMat& GpuMat::adjustROI( int dtop, int dbottom, int dleft, int dright ) { Size wholeSize; Point ofs; size_t esz = elemSize(); locateROI( wholeSize, ofs ); int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width); data += (row1 - ofs.y)*step + (col1 - ofs.x)*esz; rows = row2 - row1; cols = col2 - col1; if( esz*cols == step || rows == 1 ) flags |= Mat::CONTINUOUS_FLAG; else flags &= ~Mat::CONTINUOUS_FLAG; return *this; } inline GpuMat GpuMat::operator()( Range rowRange, Range colRange ) const { return GpuMat(*this, rowRange, colRange); } inline GpuMat GpuMat::operator()( const Rect& roi ) const { return GpuMat(*this, roi); } inline bool GpuMat::isContinuous() const { return (flags & Mat::CONTINUOUS_FLAG) != 0; } inline size_t GpuMat::elemSize() const { return CV_ELEM_SIZE(flags); } inline size_t GpuMat::elemSize1() const { return CV_ELEM_SIZE1(flags); } inline int GpuMat::type() const { return CV_MAT_TYPE(flags); } inline int GpuMat::depth() const { return CV_MAT_DEPTH(flags); } inline int GpuMat::channels() const { return CV_MAT_CN(flags); } inline size_t GpuMat::step1() const { return step/elemSize1(); } inline Size GpuMat::size() const { return Size(cols, rows); } inline bool GpuMat::empty() const { return data == 0; } inline uchar* GpuMat::ptr(int y) { CV_DbgAssert( (unsigned)y < (unsigned)rows ); return data + step*y; } inline const uchar* GpuMat::ptr(int y) const { CV_DbgAssert( (unsigned)y < (unsigned)rows ); return data + step*y; } template inline _Tp* GpuMat::ptr(int y) { CV_DbgAssert( (unsigned)y < (unsigned)rows ); return (_Tp*)(data + step*y); } template inline const _Tp* GpuMat::ptr(int y) const { CV_DbgAssert( (unsigned)y < (unsigned)rows ); return (const _Tp*)(data + step*y); } inline GpuMat GpuMat::t() const { GpuMat tmp; transpose(*this, tmp); return tmp; } static inline void swap( GpuMat& a, GpuMat& b ) { a.swap(b); } inline GpuMat createContinuous(int rows, int cols, int type) { GpuMat m; createContinuous(rows, cols, type, m); return m; } inline void createContinuous(Size size, int type, GpuMat& m) { createContinuous(size.height, size.width, type, m); } inline GpuMat createContinuous(Size size, int type) { GpuMat m; createContinuous(size, type, m); return m; } inline void ensureSizeIsEnough(Size size, int type, GpuMat& m) { ensureSizeIsEnough(size.height, size.width, type, m); } /////////////////////////////////////////////////////////////////////// //////////////////////////////// CudaMem //////////////////////////////// /////////////////////////////////////////////////////////////////////// inline CudaMem::CudaMem() : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) {} inline CudaMem::CudaMem(int _rows, int _cols, int _type, int _alloc_type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { if( _rows > 0 && _cols > 0 ) create( _rows, _cols, _type, _alloc_type); } inline CudaMem::CudaMem(Size _size, int _type, int _alloc_type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { if( _size.height > 0 && _size.width > 0 ) create( _size.height, _size.width, _type, _alloc_type); } inline CudaMem::CudaMem(const CudaMem& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type) { if( refcount ) CV_XADD(refcount, 1); } inline CudaMem::CudaMem(const Mat& m, int _alloc_type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { if( m.rows > 0 && m.cols > 0 ) create( m.size(), m.type(), _alloc_type); Mat tmp = createMatHeader(); m.copyTo(tmp); } inline CudaMem::~CudaMem() { release(); } inline CudaMem& CudaMem::operator = (const CudaMem& m) { if( this != &m ) { if( m.refcount ) CV_XADD(m.refcount, 1); release(); flags = m.flags; rows = m.rows; cols = m.cols; step = m.step; data = m.data; datastart = m.datastart; dataend = m.dataend; refcount = m.refcount; alloc_type = m.alloc_type; } return *this; } inline CudaMem CudaMem::clone() const { CudaMem m(size(), type(), alloc_type); Mat to = m; Mat from = *this; from.copyTo(to); return m; } inline void CudaMem::create(Size _size, int _type, int _alloc_type) { create(_size.height, _size.width, _type, _alloc_type); } //CCP void CudaMem::create(int _rows, int _cols, int _type, int _alloc_type); //CPP void CudaMem::release(); inline Mat CudaMem::createMatHeader() const { return Mat(size(), type(), data); } inline CudaMem::operator Mat() const { return createMatHeader(); } inline CudaMem::operator GpuMat() const { return createGpuMatHeader(); } //CPP GpuMat CudaMem::createGpuMatHeader() const; inline bool CudaMem::isContinuous() const { return (flags & Mat::CONTINUOUS_FLAG) != 0; } inline size_t CudaMem::elemSize() const { return CV_ELEM_SIZE(flags); } inline size_t CudaMem::elemSize1() const { return CV_ELEM_SIZE1(flags); } inline int CudaMem::type() const { return CV_MAT_TYPE(flags); } inline int CudaMem::depth() const { return CV_MAT_DEPTH(flags); } inline int CudaMem::channels() const { return CV_MAT_CN(flags); } inline size_t CudaMem::step1() const { return step/elemSize1(); } inline Size CudaMem::size() const { return Size(cols, rows); } inline bool CudaMem::empty() const { return data == 0; } ////////////////////////////////////////////////////////////////////////////// // Arithmetical operations inline GpuMat operator ~ (const GpuMat& src) { GpuMat dst; bitwise_not(src, dst); return dst; } inline GpuMat operator | (const GpuMat& src1, const GpuMat& src2) { GpuMat dst; bitwise_or(src1, src2, dst); return dst; } inline GpuMat operator & (const GpuMat& src1, const GpuMat& src2) { GpuMat dst; bitwise_and(src1, src2, dst); return dst; } inline GpuMat operator ^ (const GpuMat& src1, const GpuMat& src2) { GpuMat dst; bitwise_xor(src1, src2, dst); return dst; } } /* end of namespace gpu */ } /* end of namespace cv */ #endif /* __OPENCV_GPU_MATRIX_OPERATIONS_HPP__ */