/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA //////////////////////////////////////////////////////////////////////////////// // merge struct Merge : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Size size; std::vector src; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); int depth = CV_MAT_DEPTH(type); int num_channels = CV_MAT_CN(type); src.reserve(num_channels); for (int i = 0; i < num_channels; ++i) src.push_back(cv::Mat(size, depth, cv::Scalar::all(i))); cv::merge(src, dst_gold); } }; TEST_P(Merge, Accuracy) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); cv::Mat dst; ASSERT_NO_THROW( std::vector dev_src; cv::gpu::GpuMat dev_dst; for (size_t i = 0; i < src.size(); ++i) dev_src.push_back(cv::gpu::GpuMat(src[i])); cv::gpu::merge(dev_src, dev_dst); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(MatOp, Merge, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(all_types()))); //////////////////////////////////////////////////////////////////////////////// // split struct Split : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Size size; cv::Mat src; std::vector dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src.create(size, type); src.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0)); cv::split(src, dst_gold); } }; TEST_P(Split, Accuracy) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); std::vector dst; ASSERT_NO_THROW( std::vector dev_dst; cv::gpu::split(cv::gpu::GpuMat(src), dev_dst); dst.resize(dev_dst.size()); for (size_t i = 0; i < dev_dst.size(); ++i) dev_dst[i].download(dst[i]); ); ASSERT_EQ(dst_gold.size(), dst.size()); for (size_t i = 0; i < dst_gold.size(); ++i) { EXPECT_MAT_NEAR(dst_gold[i], dst[i], 0.0); } } INSTANTIATE_TEST_CASE_P(MatOp, Split, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(all_types()))); //////////////////////////////////////////////////////////////////////////////// // split_merge_consistency struct SplitMerge : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Size size; cv::Mat orig; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); orig.create(size, type); orig.setTo(cv::Scalar(1.0, 2.0, 3.0, 4.0)); } }; TEST_P(SplitMerge, Consistency) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); cv::Mat final; ASSERT_NO_THROW( std::vector dev_vec; cv::gpu::GpuMat dev_final; cv::gpu::split(cv::gpu::GpuMat(orig), dev_vec); cv::gpu::merge(dev_vec, dev_final); dev_final.download(final); ); EXPECT_MAT_NEAR(orig, final, 0.0); } INSTANTIATE_TEST_CASE_P(MatOp, SplitMerge, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(all_types()))); //////////////////////////////////////////////////////////////////////////////// // setTo struct SetTo : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Size size; cv::Mat mat_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); mat_gold.create(size, type); } }; TEST_P(SetTo, Zero) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); static cv::Scalar zero = cv::Scalar::all(0); cv::Mat mat; ASSERT_NO_THROW( cv::gpu::GpuMat dev_mat(mat_gold); mat_gold.setTo(zero); dev_mat.setTo(zero); dev_mat.download(mat); ); EXPECT_MAT_NEAR(mat_gold, mat, 0.0); } TEST_P(SetTo, SameVal) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); static cv::Scalar s = cv::Scalar::all(1); cv::Mat mat; ASSERT_NO_THROW( cv::gpu::GpuMat dev_mat(mat_gold); mat_gold.setTo(s); dev_mat.setTo(s); dev_mat.download(mat); ); EXPECT_MAT_NEAR(mat_gold, mat, 0.0); } TEST_P(SetTo, DifferentVal) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); static cv::Scalar s = cv::Scalar(1, 2, 3, 4); cv::Mat mat; ASSERT_NO_THROW( cv::gpu::GpuMat dev_mat(mat_gold); mat_gold.setTo(s); dev_mat.setTo(s); dev_mat.download(mat); ); EXPECT_MAT_NEAR(mat_gold, mat, 0.0); } TEST_P(SetTo, Masked) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); static cv::Scalar s = cv::Scalar(1, 2, 3, 4); cv::Mat mat; cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat mask = cvtest::randomMat(rng, mat.size(), CV_8UC1, 0.0, 1.5, false); ASSERT_NO_THROW( cv::gpu::GpuMat dev_mat(mat_gold); mat_gold.setTo(s, mask); dev_mat.setTo(s, cv::gpu::GpuMat(mask)); dev_mat.download(mat); ); EXPECT_MAT_NEAR(mat_gold, mat, 0.0); } INSTANTIATE_TEST_CASE_P(MatOp, SetTo, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(all_types()))); //////////////////////////////////////////////////////////////////////////////// // copyTo struct CopyTo : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Size size; cv::Mat src; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); } }; TEST_P(CopyTo, WithoutMask) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); cv::Mat dst_gold; src.copyTo(dst_gold); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_src(src); cv::gpu::GpuMat dev_dst; dev_src.copyTo(dev_dst); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(CopyTo, Masked) { if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat mask = cvtest::randomMat(rng, src.size(), CV_8UC1, 0.0, 1.5, false); cv::Mat dst_gold; src.copyTo(dst_gold, mask); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_src(src); cv::gpu::GpuMat dev_dst; dev_src.copyTo(dev_dst, cv::gpu::GpuMat(mask)); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(MatOp, CopyTo, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(all_types()))); //////////////////////////////////////////////////////////////////////////////// // convertTo struct ConvertTo : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int depth1; int depth2; cv::Size size; cv::Mat src; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); depth1 = std::tr1::get<1>(GetParam()); depth2 = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, depth1, 0.0, 127.0, false); } }; TEST_P(ConvertTo, WithoutScaling) { if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(depth1); PRINT_TYPE(depth2); PRINT_PARAM(size); cv::Mat dst_gold; src.convertTo(dst_gold, depth2); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_src(src); cv::gpu::GpuMat dev_dst; dev_src.convertTo(dev_dst, depth2); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(ConvertTo, WithScaling) { if ((depth1 == CV_64F || depth2 == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; PRINT_PARAM(devInfo); PRINT_TYPE(depth1); PRINT_TYPE(depth2); PRINT_PARAM(size); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); const double a = rng.uniform(0.0, 1.0); const double b = rng.uniform(-10.0, 10.0); PRINT_PARAM(a); PRINT_PARAM(b); cv::Mat dst_gold; src.convertTo(dst_gold, depth2, a, b); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_src(src); cv::gpu::GpuMat dev_dst; dev_src.convertTo(dev_dst, depth2, a, b); dev_dst.download(dst); ); const double eps = depth2 < CV_32F ? 1 : 1e-4; EXPECT_MAT_NEAR(dst_gold, dst, eps); } INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)), testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)))); //////////////////////////////////////////////////////////////////////////////// // async struct Async : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::gpu::CudaMem src; cv::Mat dst_gold0; cv::Mat dst_gold1; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); int rows = rng.uniform(100, 200); int cols = rng.uniform(100, 200); src = cv::gpu::CudaMem(cv::Mat::zeros(rows, cols, CV_8UC1)); dst_gold0 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(255)); dst_gold1 = cv::Mat(rows, cols, CV_8UC1, cv::Scalar::all(128)); } }; TEST_P(Async, Accuracy) { PRINT_PARAM(devInfo); cv::Mat dst0, dst1; ASSERT_NO_THROW( cv::gpu::CudaMem cpudst0; cv::gpu::CudaMem cpudst1; cv::gpu::GpuMat gpusrc; cv::gpu::GpuMat gpudst0; cv::gpu::GpuMat gpudst1(src.rows, src.cols, CV_8UC1); cv::gpu::Stream stream0; cv::gpu::Stream stream1; stream0.enqueueUpload(src, gpusrc); cv::gpu::bitwise_not(gpusrc, gpudst0, cv::gpu::GpuMat(), stream0); stream0.enqueueDownload(gpudst0, cpudst0); stream1.enqueueMemSet(gpudst1, cv::Scalar::all(128)); stream1.enqueueDownload(gpudst1, cpudst1); stream0.waitForCompletion(); stream1.waitForCompletion(); dst0 = cpudst0.createMatHeader(); dst1 = cpudst1.createMatHeader(); ); EXPECT_MAT_NEAR(dst_gold0, dst0, 0.0); EXPECT_MAT_NEAR(dst_gold1, dst1, 0.0); } INSTANTIATE_TEST_CASE_P(MatOp, Async, testing::ValuesIn(devices())); #endif // HAVE_CUDA