#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__10 = 10; static integer c__3 = 3; static integer c__4 = 4; static integer c__11 = 11; /* Subroutine */ int slasq2_(integer *n, real *z__, integer *info) { /* System generated locals */ integer i__1, i__2, i__3; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ real d__, e; integer k; real s, t; integer i0, i4, n0; real dn; integer pp; real dn1, dn2, eps, tau, tol; integer ipn4; real tol2; logical ieee; integer nbig; real dmin__, emin, emax; integer ndiv, iter; real qmin, temp, qmax, zmax; integer splt; real dmin1, dmin2; integer nfail; real desig, trace, sigma; integer iinfo, ttype; extern /* Subroutine */ int slazq3_(integer *, integer *, real *, integer *, real *, real *, real *, real *, integer *, integer *, integer * , logical *, integer *, real *, real *, real *, real *, real *, real *); extern doublereal slamch_(char *); integer iwhila, iwhilb; real oldemn, safmin; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call SLAZQ3 in place of SLASQ3, 13 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASQ2 computes all the eigenvalues of the symmetric positive */ /* definite tridiagonal matrix associated with the qd array Z to high */ /* relative accuracy are computed to high relative accuracy, in the */ /* absence of denormalization, underflow and overflow. */ /* To see the relation of Z to the tridiagonal matrix, let L be a */ /* unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */ /* let U be an upper bidiagonal matrix with 1's above and diagonal */ /* Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */ /* symmetric tridiagonal to which it is similar. */ /* Note : SLASQ2 defines a logical variable, IEEE, which is true */ /* on machines which follow ieee-754 floating-point standard in their */ /* handling of infinities and NaNs, and false otherwise. This variable */ /* is passed to SLAZQ3. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows and columns in the matrix. N >= 0. */ /* Z (workspace) REAL array, dimension (4*N) */ /* On entry Z holds the qd array. On exit, entries 1 to N hold */ /* the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */ /* trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */ /* N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */ /* holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */ /* shifts that failed. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if the i-th argument is a scalar and had an illegal */ /* value, then INFO = -i, if the i-th argument is an */ /* array and the j-entry had an illegal value, then */ /* INFO = -(i*100+j) */ /* > 0: the algorithm failed */ /* = 1, a split was marked by a positive value in E */ /* = 2, current block of Z not diagonalized after 30*N */ /* iterations (in inner while loop) */ /* = 3, termination criterion of outer while loop not met */ /* (program created more than N unreduced blocks) */ /* Further Details */ /* =============== */ /* Local Variables: I0:N0 defines a current unreduced segment of Z. */ /* The shifts are accumulated in SIGMA. Iteration count is in ITER. */ /* Ping-pong is controlled by PP (alternates between 0 and 1). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* (in case SLASQ2 is not called by SLASQ1) */ /* Parameter adjustments */ --z__; /* Function Body */ *info = 0; eps = slamch_("Precision"); safmin = slamch_("Safe minimum"); tol = eps * 100.f; /* Computing 2nd power */ r__1 = tol; tol2 = r__1 * r__1; if (*n < 0) { *info = -1; xerbla_("SLASQ2", &c__1); return 0; } else if (*n == 0) { return 0; } else if (*n == 1) { /* 1-by-1 case. */ if (z__[1] < 0.f) { *info = -201; xerbla_("SLASQ2", &c__2); } return 0; } else if (*n == 2) { /* 2-by-2 case. */ if (z__[2] < 0.f || z__[3] < 0.f) { *info = -2; xerbla_("SLASQ2", &c__2); return 0; } else if (z__[3] > z__[1]) { d__ = z__[3]; z__[3] = z__[1]; z__[1] = d__; } z__[5] = z__[1] + z__[2] + z__[3]; if (z__[2] > z__[3] * tol2) { t = (z__[1] - z__[3] + z__[2]) * .5f; s = z__[3] * (z__[2] / t); if (s <= t) { s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f))); } else { s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s))); } t = z__[1] + (s + z__[2]); z__[3] *= z__[1] / t; z__[1] = t; } z__[2] = z__[3]; z__[6] = z__[2] + z__[1]; return 0; } /* Check for negative data and compute sums of q's and e's. */ z__[*n * 2] = 0.f; emin = z__[2]; qmax = 0.f; zmax = 0.f; d__ = 0.f; e = 0.f; i__1 = *n - 1 << 1; for (k = 1; k <= i__1; k += 2) { if (z__[k] < 0.f) { *info = -(k + 200); xerbla_("SLASQ2", &c__2); return 0; } else if (z__[k + 1] < 0.f) { *info = -(k + 201); xerbla_("SLASQ2", &c__2); return 0; } d__ += z__[k]; e += z__[k + 1]; /* Computing MAX */ r__1 = qmax, r__2 = z__[k]; qmax = dmax(r__1,r__2); /* Computing MIN */ r__1 = emin, r__2 = z__[k + 1]; emin = dmin(r__1,r__2); /* Computing MAX */ r__1 = max(qmax,zmax), r__2 = z__[k + 1]; zmax = dmax(r__1,r__2); /* L10: */ } if (z__[(*n << 1) - 1] < 0.f) { *info = -((*n << 1) + 199); xerbla_("SLASQ2", &c__2); return 0; } d__ += z__[(*n << 1) - 1]; /* Computing MAX */ r__1 = qmax, r__2 = z__[(*n << 1) - 1]; qmax = dmax(r__1,r__2); zmax = dmax(qmax,zmax); /* Check for diagonality. */ if (e == 0.f) { i__1 = *n; for (k = 2; k <= i__1; ++k) { z__[k] = z__[(k << 1) - 1]; /* L20: */ } slasrt_("D", n, &z__[1], &iinfo); z__[(*n << 1) - 1] = d__; return 0; } trace = d__ + e; /* Check for zero data. */ if (trace == 0.f) { z__[(*n << 1) - 1] = 0.f; return 0; } /* Check whether the machine is IEEE conformable. */ ieee = ilaenv_(&c__10, "SLASQ2", "N", &c__1, &c__2, &c__3, &c__4) == 1 && ilaenv_(&c__11, "SLASQ2", "N", &c__1, &c__2, &c__3, &c__4) == 1; /* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */ for (k = *n << 1; k >= 2; k += -2) { z__[k * 2] = 0.f; z__[(k << 1) - 1] = z__[k]; z__[(k << 1) - 2] = 0.f; z__[(k << 1) - 3] = z__[k - 1]; /* L30: */ } i0 = 1; n0 = *n; /* Reverse the qd-array, if warranted. */ if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) { ipn4 = i0 + n0 << 2; i__1 = i0 + n0 - 1 << 1; for (i4 = i0 << 2; i4 <= i__1; i4 += 4) { temp = z__[i4 - 3]; z__[i4 - 3] = z__[ipn4 - i4 - 3]; z__[ipn4 - i4 - 3] = temp; temp = z__[i4 - 1]; z__[i4 - 1] = z__[ipn4 - i4 - 5]; z__[ipn4 - i4 - 5] = temp; /* L40: */ } } /* Initial split checking via dqd and Li's test. */ pp = 0; for (k = 1; k <= 2; ++k) { d__ = z__[(n0 << 2) + pp - 3]; i__1 = (i0 << 2) + pp; for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) { if (z__[i4 - 1] <= tol2 * d__) { z__[i4 - 1] = -0.f; d__ = z__[i4 - 3]; } else { d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1])); } /* L50: */ } /* dqd maps Z to ZZ plus Li's test. */ emin = z__[(i0 << 2) + pp + 1]; d__ = z__[(i0 << 2) + pp - 3]; i__1 = (n0 - 1 << 2) + pp; for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) { z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1]; if (z__[i4 - 1] <= tol2 * d__) { z__[i4 - 1] = -0.f; z__[i4 - (pp << 1) - 2] = d__; z__[i4 - (pp << 1)] = 0.f; d__ = z__[i4 + 1]; } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) { temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2]; z__[i4 - (pp << 1)] = z__[i4 - 1] * temp; d__ *= temp; } else { z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - ( pp << 1) - 2]); d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]); } /* Computing MIN */ r__1 = emin, r__2 = z__[i4 - (pp << 1)]; emin = dmin(r__1,r__2); /* L60: */ } z__[(n0 << 2) - pp - 2] = d__; /* Now find qmax. */ qmax = z__[(i0 << 2) - pp - 2]; i__1 = (n0 << 2) - pp - 2; for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) { /* Computing MAX */ r__1 = qmax, r__2 = z__[i4]; qmax = dmax(r__1,r__2); /* L70: */ } /* Prepare for the next iteration on K. */ pp = 1 - pp; /* L80: */ } /* Initialise variables to pass to SLAZQ3 */ ttype = 0; dmin1 = 0.f; dmin2 = 0.f; dn = 0.f; dn1 = 0.f; dn2 = 0.f; tau = 0.f; iter = 2; nfail = 0; ndiv = n0 - i0 << 1; i__1 = *n + 1; for (iwhila = 1; iwhila <= i__1; ++iwhila) { if (n0 < 1) { goto L150; } /* While array unfinished do */ /* E(N0) holds the value of SIGMA when submatrix in I0:N0 */ /* splits from the rest of the array, but is negated. */ desig = 0.f; if (n0 == *n) { sigma = 0.f; } else { sigma = -z__[(n0 << 2) - 1]; } if (sigma < 0.f) { *info = 1; return 0; } /* Find last unreduced submatrix's top index I0, find QMAX and */ /* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */ emax = 0.f; if (n0 > i0) { emin = (r__1 = z__[(n0 << 2) - 5], dabs(r__1)); } else { emin = 0.f; } qmin = z__[(n0 << 2) - 3]; qmax = qmin; for (i4 = n0 << 2; i4 >= 8; i4 += -4) { if (z__[i4 - 5] <= 0.f) { goto L100; } if (qmin >= emax * 4.f) { /* Computing MIN */ r__1 = qmin, r__2 = z__[i4 - 3]; qmin = dmin(r__1,r__2); /* Computing MAX */ r__1 = emax, r__2 = z__[i4 - 5]; emax = dmax(r__1,r__2); } /* Computing MAX */ r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5]; qmax = dmax(r__1,r__2); /* Computing MIN */ r__1 = emin, r__2 = z__[i4 - 5]; emin = dmin(r__1,r__2); /* L90: */ } i4 = 4; L100: i0 = i4 / 4; /* Store EMIN for passing to SLAZQ3. */ z__[(n0 << 2) - 1] = emin; /* Put -(initial shift) into DMIN. */ /* Computing MAX */ r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax); dmin__ = -dmax(r__1,r__2); /* Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong. */ pp = 0; nbig = (n0 - i0 + 1) * 30; i__2 = nbig; for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) { if (i0 > n0) { goto L130; } /* While submatrix unfinished take a good dqds step. */ slazq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, & nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, & dn1, &dn2, &tau); pp = 1 - pp; /* When EMIN is very small check for splits. */ if (pp == 0 && n0 - i0 >= 3) { if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 * sigma) { splt = i0 - 1; qmax = z__[(i0 << 2) - 3]; emin = z__[(i0 << 2) - 1]; oldemn = z__[i0 * 4]; i__3 = n0 - 3 << 2; for (i4 = i0 << 2; i4 <= i__3; i4 += 4) { if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= tol2 * sigma) { z__[i4 - 1] = -sigma; splt = i4 / 4; qmax = 0.f; emin = z__[i4 + 3]; oldemn = z__[i4 + 4]; } else { /* Computing MAX */ r__1 = qmax, r__2 = z__[i4 + 1]; qmax = dmax(r__1,r__2); /* Computing MIN */ r__1 = emin, r__2 = z__[i4 - 1]; emin = dmin(r__1,r__2); /* Computing MIN */ r__1 = oldemn, r__2 = z__[i4]; oldemn = dmin(r__1,r__2); } /* L110: */ } z__[(n0 << 2) - 1] = emin; z__[n0 * 4] = oldemn; i0 = splt + 1; } } /* L120: */ } *info = 2; return 0; /* end IWHILB */ L130: /* L140: */ ; } *info = 3; return 0; /* end IWHILA */ L150: /* Move q's to the front. */ i__1 = *n; for (k = 2; k <= i__1; ++k) { z__[k] = z__[(k << 2) - 3]; /* L160: */ } /* Sort and compute sum of eigenvalues. */ slasrt_("D", n, &z__[1], &iinfo); e = 0.f; for (k = *n; k >= 1; --k) { e += z__[k]; /* L170: */ } /* Store trace, sum(eigenvalues) and information on performance. */ z__[(*n << 1) + 1] = trace; z__[(*n << 1) + 2] = e; z__[(*n << 1) + 3] = (real) iter; /* Computing 2nd power */ i__1 = *n; z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1); z__[(*n << 1) + 5] = nfail * 100.f / (real) iter; return 0; /* End of SLASQ2 */ } /* slasq2_ */