/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/highgui/highgui.hpp" using namespace std; using namespace cv; const string FEATURES2D_DIR = "features2d"; const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors"; const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; const string IMAGE_FILENAME = "tsukuba.png"; /****************************************************************************************\ * Regression tests for feature detectors comparing keypoints. * \****************************************************************************************/ class CV_FeatureDetectorTest : public cvtest::BaseTest { public: CV_FeatureDetectorTest( const string& _name, const Ptr& _fdetector ) : name(_name), fdetector(_fdetector) {} protected: bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ); void compareKeypointSets( const vector& validKeypoints, const vector& calcKeypoints ); void emptyDataTest(); void regressionTest(); // TODO test of detect() with mask virtual void run( int ); string name; Ptr fdetector; }; void CV_FeatureDetectorTest::emptyDataTest() { // One image. Mat image; vector keypoints; try { fdetector->detect( image, keypoints ); } catch(...) { ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } if( !keypoints.empty() ) { ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // Several images. vector images; vector > keypointCollection; try { fdetector->detect( images, keypointCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) { const float maxPtDif = 1.f; const float maxSizeDif = 1.f; const float maxAngleDif = 2.f; const float maxResponseDif = 0.1f; float dist = (float)norm( p1.pt - p2.pt ); return (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && p1.octave == p2.octave && p1.class_id == p2.class_id ); } void CV_FeatureDetectorTest::compareKeypointSets( const vector& validKeypoints, const vector& calcKeypoints ) { const float maxCountRatioDif = 0.01f; // Compare counts of validation and calculated keypoints. float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif ) { ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n", validKeypoints.size(), calcKeypoints.size() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } int progress = 0, progressCount = validKeypoints.size() * calcKeypoints.size(); int badPointCount = 0, commonPointCount = max(validKeypoints.size(), calcKeypoints.size()); for( size_t v = 0; v < validKeypoints.size(); v++ ) { int nearestIdx = -1; float minDist = std::numeric_limits::max(); for( size_t c = 0; c < calcKeypoints.size(); c++ ) { progress = update_progress( progress, v*calcKeypoints.size() + c, progressCount, 0 ); float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt ); if( curDist < minDist ) { minDist = curDist; nearestIdx = c; } } assert( minDist >= 0 ); if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) badPointCount++; } ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n", badPointCount, validKeypoints.size(), calcKeypoints.size() ); if( badPointCount > 0.9 * commonPointCount ) { ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } ts->printf( cvtest::TS::LOG, " - OK\n" ); } void CV_FeatureDetectorTest::regressionTest() { assert( !fdetector.empty() ); string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz"; // Read the test image. Mat image = imread( imgFilename ); if( image.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } FileStorage fs( resFilename, FileStorage::READ ); // Compute keypoints. vector calcKeypoints; fdetector->detect( image, calcKeypoints ); if( fs.isOpened() ) // Compare computed and valid keypoints. { // TODO compare saved feature detector params with current ones // Read validation keypoints set. vector validKeypoints; read( fs["keypoints"], validKeypoints ); if( validKeypoints.empty() ) { ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } compareKeypointSets( validKeypoints, calcKeypoints ); } else // Write detector parameters and computed keypoints as validation data. { fs.open( resFilename, FileStorage::WRITE ); if( !fs.isOpened() ) { ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } else { fs << "detector_params" << "{"; fdetector->write( fs ); fs << "}"; write( fs, "keypoints", calcKeypoints ); } } } void CV_FeatureDetectorTest::run( int /*start_from*/ ) { if( fdetector.empty() ) { ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } /****************************************************************************************\ * Regression tests for descriptor extractors. * \****************************************************************************************/ static void writeMatInBin( const Mat& mat, const string& filename ) { FILE* f = fopen( filename.c_str(), "wb"); if( f ) { int type = mat.type(); fwrite( (void*)&mat.rows, sizeof(int), 1, f ); fwrite( (void*)&mat.cols, sizeof(int), 1, f ); fwrite( (void*)&type, sizeof(int), 1, f ); int dataSize = mat.step * mat.rows * mat.channels(); fwrite( (void*)&dataSize, sizeof(int), 1, f ); fwrite( (void*)mat.data, 1, dataSize, f ); fclose(f); } } static Mat readMatFromBin( const string& filename ) { FILE* f = fopen( filename.c_str(), "rb" ); if( f ) { int rows, cols, type, dataSize; fread( (void*)&rows, sizeof(int), 1, f ); fread( (void*)&cols, sizeof(int), 1, f ); fread( (void*)&type, sizeof(int), 1, f ); fread( (void*)&dataSize, sizeof(int), 1, f ); uchar* data = (uchar*)cvAlloc(dataSize); fread( (void*)data, 1, dataSize, f ); fclose(f); return Mat( rows, cols, type, data ); } return Mat(); } template class CV_DescriptorExtractorTest : public cvtest::BaseTest { public: typedef typename Distance::ValueType ValueType; typedef typename Distance::ResultType DistanceType; CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr& _dextractor, float _prevTime, Distance d = Distance() ): name(_name), maxDist(_maxDist), prevTime(_prevTime), dextractor(_dextractor), distance(d) {} protected: virtual void createDescriptorExtractor() {} void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) { if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) { ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } CV_Assert( DataType::type == validDescriptors.type() ); int dimension = validDescriptors.cols; DistanceType curMaxDist = std::numeric_limits::min(); for( int y = 0; y < validDescriptors.rows; y++ ) { DistanceType dist = distance( validDescriptors.ptr(y), calcDescriptors.ptr(y), dimension ); if( dist > curMaxDist ) curMaxDist = dist; } stringstream ss; ss << "Max distance between valid and computed descriptors " << curMaxDist; if( curMaxDist < maxDist ) ss << "." << endl; else { ss << ">" << maxDist << " - bad accuracy!"<< endl; ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } ts->printf(cvtest::TS::LOG, ss.str().c_str() ); } void emptyDataTest() { assert( !dextractor.empty() ); // One image. Mat image; vector keypoints; Mat descriptors; try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } image.create( 50, 50, CV_8UC3 ); try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Several images. vector images; vector > keypointsCollection; vector descriptorsCollection; try { dextractor->compute( images, keypointsCollection, descriptorsCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } } void regressionTest() { assert( !dextractor.empty() ); // Read the test image. string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; Mat img = imread( imgFilename ); if( img.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } vector keypoints; FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ ); if( fs.isOpened() ) { read( fs.getFirstTopLevelNode(), keypoints ); Mat calcDescriptors; double t = (double)getTickCount(); dextractor->compute( img, keypoints, calcDescriptors ); t = getTickCount() - t; ts->printf(cvtest::TS::LOG, "\nAverage time of computiting one descriptor = %g ms (previous time = %g ms).\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows, prevTime ); if( calcDescriptors.rows != (int)keypoints.size() ) { ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() ) { ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // TODO read and write descriptor extractor parameters and check them Mat validDescriptors = readDescriptors(); if( !validDescriptors.empty() ) compareDescriptors( validDescriptors, calcDescriptors ); else { if( !writeDescriptors( calcDescriptors ) ) { ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } } } else { ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" ); fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE ); if( fs.isOpened() ) { SurfFeatureDetector fd; fd.detect(img, keypoints); write( fs, "keypoints", keypoints ); } else { ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } } } void run(int) { createDescriptorExtractor(); if( dextractor.empty() ) { ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } virtual Mat readDescriptors() { Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return res; } virtual bool writeDescriptors( Mat& descs ) { writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return true; } const DistanceType maxDist; const float prevTime; string name; Ptr dextractor; Distance distance; private: CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } }; template class CV_CalonderDescriptorExtractorTest : public CV_DescriptorExtractorTest { public: CV_CalonderDescriptorExtractorTest( const char* testName, float _normDif, float _prevTime ) : CV_DescriptorExtractorTest( testName, _normDif, Ptr(), _prevTime ) {} protected: virtual void createDescriptorExtractor() { CV_DescriptorExtractorTest::dextractor = new CalonderDescriptorExtractor( string(CV_DescriptorExtractorTest::ts->get_data_path()) + FEATURES2D_DIR + "/calonder_classifier.rtc"); } }; /****************************************************************************************\ * Algorithmic tests for descriptor matchers * \****************************************************************************************/ class CV_DescriptorMatcherTest : public cvtest::BaseTest { public: CV_DescriptorMatcherTest( const string& _name, const Ptr& _dmatcher, float _badPart ) : name(_name), badPart(_badPart), dmatcher(_dmatcher) {} protected: static const int dim = 500; static const int queryDescCount = 300; // must be even number because we split train data in some cases in two static const int countFactor = 4; // do not change it const float badPart; virtual void run( int ); void generateData( Mat& query, Mat& train ); void emptyDataTest(); void matchTest( const Mat& query, const Mat& train ); void knnMatchTest( const Mat& query, const Mat& train ); void radiusMatchTest( const Mat& query, const Mat& train ); string name; Ptr dmatcher; private: CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; } }; void CV_DescriptorMatcherTest::emptyDataTest() { assert( !dmatcher.empty() ); Mat queryDescriptors, trainDescriptors, mask; vector trainDescriptorCollection, masks; vector matches; vector > vmatches; try { dmatcher->match( queryDescriptors, trainDescriptors, matches, mask ); } catch(...) { ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask ); } catch(...) { ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask ); } catch(...) { ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->add( trainDescriptorCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->match( queryDescriptors, matches, masks ); } catch(...) { ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks ); } catch(...) { ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } try { dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks ); } catch(...) { ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train ) { RNG& rng = theRNG(); // Generate query descriptors randomly. // Descriptor vector elements are integer values. Mat buf( queryDescCount, dim, CV_32SC1 ); rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) ); buf.convertTo( query, CV_32FC1 ); // Generate train decriptors as follows: // copy each query descriptor to train set countFactor times // and perturb some one element of the copied descriptors in // in ascending order. General boundaries of the perturbation // are (0.f, 1.f). train.create( query.rows*countFactor, query.cols, CV_32FC1 ); float step = 1.f / countFactor; for( int qIdx = 0; qIdx < query.rows; qIdx++ ) { Mat queryDescriptor = query.row(qIdx); for( int c = 0; c < countFactor; c++ ) { int tIdx = qIdx * countFactor + c; Mat trainDescriptor = train.row(tIdx); queryDescriptor.copyTo( trainDescriptor ); int elem = rng(dim); float diff = rng.uniform( step*c, step*(c+1) ); trainDescriptor.at(0, elem) += diff; } } } void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of match() { vector matches; dmatcher->match( query, train, matches ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { DMatch match = matches[i]; if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) badCount++; } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test version of match() with add() { vector matches; // make add() twice to test such case dmatcher->add( vector(1,train.rowRange(0, train.rows/2)) ); dmatcher->add( vector(1,train.rowRange(train.rows/2, train.rows)) ); // prepare masks (make first nearest match illegal) vector masks(2); for(int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); for( int di = 0; di < queryDescCount/2; di++ ) masks[mi].col(di*countFactor).setTo(Scalar::all(0)); } dmatcher->match( query, matches, masks ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { DMatch match = matches[i]; int shift = dmatcher->isMaskSupported() ? 1 : 0; { if( i < queryDescCount/2 ) { if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) ) badCount++; } else { if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) ) badCount++; } } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } } void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of knnMatch() { const int knn = 3; vector > matches; dmatcher->knnMatch( query, train, matches, knn ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != knn ) badCount++; else { int localBadCount = 0; for( int k = 0; k < knn; k++ ) { DMatch match = matches[i][k]; if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) ) localBadCount++; } badCount += localBadCount > 0 ? 1 : 0; } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test version of knnMatch() with add() { const int knn = 2; vector > matches; // make add() twice to test such case dmatcher->add( vector(1,train.rowRange(0, train.rows/2)) ); dmatcher->add( vector(1,train.rowRange(train.rows/2, train.rows)) ); // prepare masks (make first nearest match illegal) vector masks(2); for(int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); for( int di = 0; di < queryDescCount/2; di++ ) masks[mi].col(di*countFactor).setTo(Scalar::all(0)); } dmatcher->knnMatch( query, matches, knn, masks ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; int shift = dmatcher->isMaskSupported() ? 1 : 0; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != knn ) badCount++; else { int localBadCount = 0; for( int k = 0; k < knn; k++ ) { DMatch match = matches[i][k]; { if( i < queryDescCount/2 ) { if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || (match.imgIdx != 0) ) localBadCount++; } else { if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || (match.imgIdx != 1) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } } void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train ) { dmatcher->clear(); // test const version of match() { const float radius = 1.f/countFactor; vector > matches; dmatcher->radiusMatch( query, train, matches, radius ); if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } else { int badCount = 0; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != 1 ) badCount++; else { DMatch match = matches[i][0]; if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) ) badCount++; } } if( (float)badCount > (float)queryDescCount*badPart ) { ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } } // test version of match() with add() { int n = 3; const float radius = 1.f/countFactor * n; vector > matches; // make add() twice to test such case dmatcher->add( vector(1,train.rowRange(0, train.rows/2)) ); dmatcher->add( vector(1,train.rowRange(train.rows/2, train.rows)) ); // prepare masks (make first nearest match illegal) vector masks(2); for(int mi = 0; mi < 2; mi++ ) { masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); for( int di = 0; di < queryDescCount/2; di++ ) masks[mi].col(di*countFactor).setTo(Scalar::all(0)); } dmatcher->radiusMatch( query, matches, radius, masks ); int curRes = cvtest::TS::OK; if( (int)matches.size() != queryDescCount ) { ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } int badCount = 0; int shift = dmatcher->isMaskSupported() ? 1 : 0; int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n; for( size_t i = 0; i < matches.size(); i++ ) { if( (int)matches[i].size() != needMatchCount ) badCount++; else { int localBadCount = 0; for( int k = 0; k < needMatchCount; k++ ) { DMatch match = matches[i][k]; { if( i < queryDescCount/2 ) { if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) || (match.imgIdx != 0) ) localBadCount++; } else { if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) || (match.imgIdx != 1) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } if( (float)badCount > (float)queryDescCount*badPart ) { curRes = cvtest::TS::FAIL_INVALID_OUTPUT; ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n", (float)badCount/(float)queryDescCount ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } } } void CV_DescriptorMatcherTest::run( int ) { Mat query, train; generateData( query, train ); matchTest( query, train ); knnMatchTest( query, train ); radiusMatchTest( query, train ); } /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ /* * Detectors */ TEST( Features2d_Detector_FAST, regression ) { CV_FeatureDetectorTest test( "detector-fast", FeatureDetector::create("FAST") ); test.safe_run(); } TEST( Features2d_Detector_GFTT, regression ) { CV_FeatureDetectorTest test( "detector-gftt", FeatureDetector::create("GFTT") ); test.safe_run(); } TEST( Features2d_Detector_Harris, regression ) { CV_FeatureDetectorTest test( "detector-harris", FeatureDetector::create("HARRIS") ); test.safe_run(); } TEST( Features2d_Detector_MSER, regression ) { CV_FeatureDetectorTest test( "detector-mser", FeatureDetector::create("MSER") ); test.safe_run(); } TEST( Features2d_Detector_SIFT, regression ) { CV_FeatureDetectorTest test( "detector-sift", FeatureDetector::create("SIFT") ); test.safe_run(); } TEST( Features2d_Detector_STAR, regression ) { CV_FeatureDetectorTest test( "detector-star", FeatureDetector::create("STAR") ); test.safe_run(); } TEST( Features2d_Detector_SURF, regression ) { CV_FeatureDetectorTest test( "detector-surf", FeatureDetector::create("SURF") ); test.safe_run(); } TEST( Features2d_Detector_GridFAST, regression ) { CV_FeatureDetectorTest test( "detector-grid-fast", FeatureDetector::create("GridFAST") ); test.safe_run(); } TEST( Features2d_Detector_PyramidFAST, regression ) { CV_FeatureDetectorTest test( "detector-pyramid-fast", FeatureDetector::create("PyramidFAST") ); test.safe_run(); } /* * Descriptors */ TEST( Features2d_DescriptorExtractor_SIFT, regression ) { CV_DescriptorExtractorTest > test( "descriptor-sift", 0.03f, DescriptorExtractor::create("SIFT"), 8.06652f ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_SURF, regression ) { CV_DescriptorExtractorTest > test( "descriptor-surf", 0.035f, DescriptorExtractor::create("SURF"), 0.147372f ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_BRIEF, regression ) { CV_DescriptorExtractorTest test( "descriptor-brief", 1, DescriptorExtractor::create("BRIEF"), 0.00527548f ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_OpponentSIFT, regression ) { CV_DescriptorExtractorTest > test( "descriptor-opponent-sift", 0.18f, DescriptorExtractor::create("OpponentSIFT"), 8.06652f ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_OpponentSURF, regression ) { CV_DescriptorExtractorTest > test( "descriptor-opponent-surf", 0.18f, DescriptorExtractor::create("OpponentSURF"), 0.147372f ); test.safe_run(); } #if CV_SSE2 TEST( Features2d_DescriptorExtractor_Calonder_uchar, regression ) { CV_CalonderDescriptorExtractorTest > test( "descriptor-calonder-uchar", std::numeric_limits::epsilon() + 1, 0.0132175f ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_Calonder_float, regression ) { CV_CalonderDescriptorExtractorTest > test( "descriptor-calonder-float", std::numeric_limits::epsilon(), 0.0221308f ); test.safe_run(); } #endif // CV_SSE2 /* * Matchers */ TEST( Features2d_DescriptorMatcher_BruteForce, regression ) { CV_DescriptorMatcherTest test( "descriptor-matcher-brute-force", new BruteForceMatcher >, 0.01f ); test.safe_run(); } TEST( Features2d_DescriptorMatcher_FlannBased, regression ) { CV_DescriptorMatcherTest test( "descriptor-matcher-flann-based", new FlannBasedMatcher, 0.04f ); test.safe_run(); }