/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include <string> #include <iostream> #include <iterator> #include <fstream> #include <numeric> #include <algorithm> #include <iterator> using namespace cv; using namespace std; class CV_DetectorsTest : public cvtest::BaseTest { public: CV_DetectorsTest(); ~CV_DetectorsTest(); protected: void run(int); template <class T> bool testDetector(const Mat& img, const T& detector, vector<KeyPoint>& expected); void LoadExpected(const string& file, vector<KeyPoint>& out); }; CV_DetectorsTest::CV_DetectorsTest() { } CV_DetectorsTest::~CV_DetectorsTest() {} void getRotation(const Mat& img, Mat& aff, Mat& out) { Point center(img.cols/2, img.rows/2); aff = getRotationMatrix2D(center, 30, 1); warpAffine( img, out, aff, img.size()); } void getZoom(const Mat& img, Mat& aff, Mat& out) { const double mult = 1.2; aff.create(2, 3, CV_64F); double *data = aff.ptr<double>(); data[0] = mult; data[1] = 0; data[2] = 0; data[3] = 0; data[4] = mult; data[5] = 0; warpAffine( img, out, aff, img.size()); } void getBlur(const Mat& img, Mat& aff, Mat& out) { aff.create(2, 3, CV_64F); double *data = aff.ptr<double>(); data[0] = 1; data[1] = 0; data[2] = 0; data[3] = 0; data[4] = 1; data[5] = 0; GaussianBlur(img, out, Size(5, 5), 2); } void getBrightness(const Mat& img, Mat& aff, Mat& out) { aff.create(2, 3, CV_64F); double *data = aff.ptr<double>(); data[0] = 1; data[1] = 0; data[2] = 0; data[3] = 0; data[4] = 1; data[5] = 0; add(img, Mat(img.size(), img.type(), Scalar(15)), out); } void showOrig(const Mat& img, const vector<KeyPoint>& orig_pts) { Mat img_color; cvtColor(img, img_color, CV_GRAY2BGR); for(size_t i = 0; i < orig_pts.size(); ++i) circle(img_color, orig_pts[i].pt, (int)orig_pts[i].size/2, CV_RGB(0, 255, 0)); namedWindow("O"); imshow("O", img_color); } void show(const string& name, const Mat& new_img, const vector<KeyPoint>& new_pts, const vector<KeyPoint>& transf_pts) { Mat new_img_color; cvtColor(new_img, new_img_color, CV_GRAY2BGR); for(size_t i = 0; i < transf_pts.size(); ++i) circle(new_img_color, transf_pts[i].pt, (int)transf_pts[i].size/2, CV_RGB(255, 0, 0)); for(size_t i = 0; i < new_pts.size(); ++i) circle(new_img_color, new_pts[i].pt, (int)new_pts[i].size/2, CV_RGB(0, 0, 255)); namedWindow(name + "_T"); imshow(name + "_T", new_img_color); } struct WrapPoint { const double* R; WrapPoint(const Mat& rmat) : R(rmat.ptr<double>()) { }; KeyPoint operator()(const KeyPoint& kp) const { KeyPoint res = kp; res.pt.x = static_cast<float>(kp.pt.x * R[0] + kp.pt.y * R[1] + R[2]); res.pt.y = static_cast<float>(kp.pt.x * R[3] + kp.pt.y * R[4] + R[5]); return res; } }; struct sortByR { bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) { return norm(kp1.pt) < norm(kp2.pt); } }; template <class T> bool CV_DetectorsTest::testDetector(const Mat& img, const T& detector, vector<KeyPoint>& exp) { vector<KeyPoint> orig_kpts; detector(img, orig_kpts); typedef void (*TransfFunc )(const Mat&, Mat&, Mat& FransfFunc); const TransfFunc transfFunc[] = { getRotation, getZoom, getBlur, getBrightness }; //const string names[] = { "Rotation", "Zoom", "Blur", "Brightness" }; const size_t case_num = sizeof(transfFunc)/sizeof(transfFunc[0]); vector<Mat> affs(case_num); vector<Mat> new_imgs(case_num); vector< vector<KeyPoint> > new_kpts(case_num); vector< vector<KeyPoint> > transf_kpts(case_num); //showOrig(img, orig_kpts); for(size_t i = 0; i < case_num; ++i) { transfFunc[i](img, affs[i], new_imgs[i]); detector(new_imgs[i], new_kpts[i]); transform(orig_kpts.begin(), orig_kpts.end(), back_inserter(transf_kpts[i]), WrapPoint(affs[i])); //show(names[i], new_imgs[i], new_kpts[i], transf_kpts[i]); } const float thres = 3; const float nthres = 3; vector<KeyPoint> result; for(size_t i = 0; i < orig_kpts.size(); ++i) { const KeyPoint& okp = orig_kpts[i]; int foundCounter = 0; for(size_t j = 0; j < case_num; ++j) { const KeyPoint& tkp = transf_kpts[j][i]; size_t k = 0; for(; k < new_kpts[j].size(); ++k) if (norm(new_kpts[j][k].pt - tkp.pt) < nthres && fabs(new_kpts[j][k].size - tkp.size) < thres) break; if (k != new_kpts[j].size()) ++foundCounter; } if (foundCounter == (int)case_num) result.push_back(okp); } sort(result.begin(), result.end(), sortByR()); sort(exp.begin(), exp.end(), sortByR()); if (result.size() != exp.size()) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return false; } int foundCounter1 = 0; for(size_t i = 0; i < exp.size(); ++i) { const KeyPoint& e = exp[i]; size_t j = 0; for(; j < result.size(); ++j) { const KeyPoint& r = result[i]; if (norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres) break; } if (j != result.size()) ++foundCounter1; } int foundCounter2 = 0; for(size_t i = 0; i < result.size(); ++i) { const KeyPoint& r = result[i]; size_t j = 0; for(; j < exp.size(); ++j) { const KeyPoint& e = exp[i]; if (norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres) break; } if (j != exp.size()) ++foundCounter2; } //showOrig(img, result); waitKey(); const float errorRate = 0.9f; if (float(foundCounter1)/exp.size() < errorRate || float(foundCounter2)/result.size() < errorRate) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH); return false; } return true; } struct SurfNoMaskWrap { const SURF& detector; SurfNoMaskWrap(const SURF& surf) : detector(surf) {} SurfNoMaskWrap& operator=(const SurfNoMaskWrap&); void operator()(const Mat& img, vector<KeyPoint>& kpts) const { detector(img, Mat(), kpts); } }; void CV_DetectorsTest::LoadExpected(const string& file, vector<KeyPoint>& out) { Mat mat_exp; FileStorage fs(file, FileStorage::READ); if (fs.isOpened()) { read( fs["ResultVectorData"], mat_exp, Mat() ); out.resize(mat_exp.cols / sizeof(KeyPoint)); copy(mat_exp.ptr<KeyPoint>(), mat_exp.ptr<KeyPoint>() + out.size(), out.begin()); } else { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA); out.clear(); } } void CV_DetectorsTest::run( int /*start_from*/ ) { Mat img = imread(string(ts->get_data_path()) + "shared/graffiti.png", 0); if (img.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } Mat to_test(img.size() * 2, img.type(), Scalar(0)); Mat roi = to_test(Rect(img.rows/2, img.cols/2, img.cols, img.rows)); img.copyTo(roi); GaussianBlur(to_test, to_test, Size(3, 3), 1.5); vector<KeyPoint> exp; LoadExpected(string(ts->get_data_path()) + "detectors/surf.xml", exp); if (exp.empty()) return; if (!testDetector(to_test, SurfNoMaskWrap(SURF(1536+512+512, 2)), exp)) return; LoadExpected(string(ts->get_data_path()) + "detectors/star.xml", exp); if (exp.empty()) return; if (!testDetector(to_test, StarDetector(45, 30, 10, 8, 5), exp)) return; ts->set_failed_test_info( cvtest::TS::OK); } TEST(Features2d_Detectors, regression) { CV_DetectorsTest test; test.safe_run(); }