/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) double cv::cuda::norm(InputArray, int, InputArray, GpuMat&) { throw_no_cuda(); return 0.0; } double cv::cuda::norm(InputArray, InputArray, GpuMat&, int) { throw_no_cuda(); return 0.0; } Scalar cv::cuda::sum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); } Scalar cv::cuda::absSum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); } Scalar cv::cuda::sqrSum(InputArray, InputArray, GpuMat&) { throw_no_cuda(); return Scalar(); } void cv::cuda::minMax(InputArray, double*, double*, InputArray, GpuMat&) { throw_no_cuda(); } void cv::cuda::minMaxLoc(InputArray, double*, double*, Point*, Point*, InputArray, GpuMat&, GpuMat&) { throw_no_cuda(); } int cv::cuda::countNonZero(InputArray, GpuMat&) { throw_no_cuda(); return 0; } void cv::cuda::reduce(InputArray, OutputArray, int, int, int, Stream&) { throw_no_cuda(); } void cv::cuda::meanStdDev(InputArray, Scalar&, Scalar&, GpuMat&) { throw_no_cuda(); } void cv::cuda::rectStdDev(InputArray, InputArray, OutputArray, Rect, Stream&) { throw_no_cuda(); } void cv::cuda::normalize(InputArray, OutputArray, double, double, int, int, InputArray, GpuMat&, GpuMat&) { throw_no_cuda(); } void cv::cuda::integral(InputArray, OutputArray, GpuMat&, Stream&) { throw_no_cuda(); } void cv::cuda::sqrIntegral(InputArray, OutputArray, GpuMat&, Stream&) { throw_no_cuda(); } #else namespace { class DeviceBuffer { public: explicit DeviceBuffer(int count_ = 1) : count(count_) { cudaSafeCall( cudaMalloc(&pdev, count * sizeof(double)) ); } ~DeviceBuffer() { cudaSafeCall( cudaFree(pdev) ); } operator double*() {return pdev;} void download(double* hptr) { double hbuf; cudaSafeCall( cudaMemcpy(&hbuf, pdev, sizeof(double), cudaMemcpyDeviceToHost) ); *hptr = hbuf; } void download(double** hptrs) { AutoBuffer hbuf(count); cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) ); for (int i = 0; i < count; ++i) *hptrs[i] = hbuf[i]; } private: double* pdev; int count; }; } //////////////////////////////////////////////////////////////////////// // norm double cv::cuda::norm(InputArray _src, int normType, InputArray _mask, GpuMat& buf) { GpuMat src = _src.getGpuMat(); GpuMat mask = _mask.getGpuMat(); CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 ); CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size() && src.channels() == 1) ); GpuMat src_single_channel = src.reshape(1); if (normType == NORM_L1) return cuda::absSum(src_single_channel, mask, buf)[0]; if (normType == NORM_L2) return std::sqrt(cuda::sqrSum(src_single_channel, mask, buf)[0]); // NORM_INF double min_val, max_val; cuda::minMax(src_single_channel, &min_val, &max_val, mask, buf); return std::max(std::abs(min_val), std::abs(max_val)); } //////////////////////////////////////////////////////////////////////// // meanStdDev void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev, GpuMat& buf) { GpuMat src = _src.getGpuMat(); CV_Assert( src.type() == CV_8UC1 ); if (!deviceSupports(FEATURE_SET_COMPUTE_13)) CV_Error(cv::Error::StsNotImplemented, "Not sufficient compute capebility"); NppiSize sz; sz.width = src.cols; sz.height = src.rows; DeviceBuffer dbuf(2); int bufSize; #if (CUDA_VERSION <= 4020) nppSafeCall( nppiMeanStdDev8uC1RGetBufferHostSize(sz, &bufSize) ); #else nppSafeCall( nppiMeanStdDevGetBufferHostSize_8u_C1R(sz, &bufSize) ); #endif ensureSizeIsEnough(1, bufSize, CV_8UC1, buf); nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr(), static_cast(src.step), sz, buf.ptr(), dbuf, (double*)dbuf + 1) ); cudaSafeCall( cudaDeviceSynchronize() ); double* ptrs[2] = {mean.val, stddev.val}; dbuf.download(ptrs); } ////////////////////////////////////////////////////////////////////////////// // rectStdDev void cv::cuda::rectStdDev(InputArray _src, InputArray _sqr, OutputArray _dst, Rect rect, Stream& _stream) { GpuMat src = _src.getGpuMat(); GpuMat sqr = _sqr.getGpuMat(); CV_Assert( src.type() == CV_32SC1 && sqr.type() == CV_64FC1 ); _dst.create(src.size(), CV_32FC1); GpuMat dst = _dst.getGpuMat(); NppiSize sz; sz.width = src.cols; sz.height = src.rows; NppiRect nppRect; nppRect.height = rect.height; nppRect.width = rect.width; nppRect.x = rect.x; nppRect.y = rect.y; cudaStream_t stream = StreamAccessor::getStream(_stream); NppStreamHandler h(stream); nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr(), static_cast(src.step), sqr.ptr(), static_cast(sqr.step), dst.ptr(), static_cast(dst.step), sz, nppRect) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // normalize void cv::cuda::normalize(InputArray _src, OutputArray dst, double a, double b, int norm_type, int dtype, InputArray mask, GpuMat& norm_buf, GpuMat& cvt_buf) { GpuMat src = _src.getGpuMat(); double scale = 1, shift = 0; if (norm_type == NORM_MINMAX) { double smin = 0, smax = 0; double dmin = std::min(a, b), dmax = std::max(a, b); cuda::minMax(src, &smin, &smax, mask, norm_buf); scale = (dmax - dmin) * (smax - smin > std::numeric_limits::epsilon() ? 1.0 / (smax - smin) : 0.0); shift = dmin - smin * scale; } else if (norm_type == NORM_L2 || norm_type == NORM_L1 || norm_type == NORM_INF) { scale = cuda::norm(src, norm_type, mask, norm_buf); scale = scale > std::numeric_limits::epsilon() ? a / scale : 0.0; shift = 0; } else { CV_Error(cv::Error::StsBadArg, "Unknown/unsupported norm type"); } if (mask.empty()) { src.convertTo(dst, dtype, scale, shift); } else { src.convertTo(cvt_buf, dtype, scale, shift); cvt_buf.copyTo(dst, mask); } } #endif