#include #include namespace cv { class CV_EXPORTS_W Subdiv2D { public: enum { PTLOC_ERROR = -2, PTLOC_OUTSIDE_RECT = -1, PTLOC_INSIDE = 0, PTLOC_VERTEX = 1, PTLOC_ON_EDGE = 2 }; enum { NEXT_AROUND_ORG = 0x00, NEXT_AROUND_DST = 0x22, PREV_AROUND_ORG = 0x11, PREV_AROUND_DST = 0x33, NEXT_AROUND_LEFT = 0x13, NEXT_AROUND_RIGHT = 0x31, PREV_AROUND_LEFT = 0x20, PREV_AROUND_RIGHT = 0x02 }; CV_WRAP Subdiv2D(); CV_WRAP Subdiv2D(Rect rect); CV_WRAP void initDelaunay(Rect rect); CV_WRAP int insert(Point2f pt); CV_WRAP void insert(const vector& ptvec); CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0); CV_WRAP void getTriangleList(CV_OUT vector& triangleList); CV_WRAP void getVoronoiFacetList(const vector& idx, CV_OUT vector >& facetList); CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const; CV_WRAP int getEdge( int edge, int nextEdgeType ) const; CV_WRAP int nextEdge(int edge) const; CV_WRAP int rotateEdge(int edge, int rotate) const; CV_WRAP int symEdge(int edge) const; CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const; CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const; protected: int newEdge(); void deleteEdge(int edge); int newPoint(Point2f pt, bool isvirtual, int firstEdge=0); void deletePoint(int vtx); void setEdgePoints( int edge, int orgPt, int dstPt ); void splice( int edgeA, int edgeB ); int connectEdges( int edgeA, int edgeB ); void swapEdges( int edge ); int isRightOf(Point2f pt, int edge) const; void calcVoronoi(); void clearVoronoi(); struct CV_EXPORTS Vertex { Vertex(); Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); bool isvirtual() const; bool isfree() const; int firstEdge; int type; Point2f pt; }; struct CV_EXPORTS QuadEdge { QuadEdge(); QuadEdge(int edgeidx); bool isfree() const; int next[4]; int pt[4]; }; vector vtx; vector qedges; int freeQEdge; int freePoint; bool validGeometry; int recentEdge; Point2f topLeft; Point2f bottomRight; }; int Subdiv2D::nextEdge(int edge) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); return qedges[edge >> 2].next[edge & 3]; } int Subdiv2D::rotateEdge(int edge, int rotate) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); return (edge & ~3) + ((edge + rotate) & 3); } int Subdiv2D::symEdge(int edge) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); return edge ^ 2; } int Subdiv2D::getEdge(int edge, int nextEdgeType) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); edge = qedges[edge >> 2].next[(edge + nextEdgeType) & 3]; return (edge & ~3) + ((edge + (nextEdgeType >> 4)) & 3); } int Subdiv2D::edgeOrg(int edge, CV_OUT Point2f* orgpt) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); int vidx = qedges[edge >> 2].pt[edge & 3]; if( orgpt ) { CV_DbgAssert((size_t)vidx < vtx.size()); *orgpt = vtx[vidx].pt; } return vidx; } int Subdiv2D::edgeDst(int edge, CV_OUT Point2f* dstpt) const { CV_DbgAssert((size_t)(edge >> 2) < qedges.size()); int vidx = qedges[edge >> 2].pt[(edge + 2) & 3]; if( dstpt ) { CV_DbgAssert((size_t)vidx < vtx.size()); *dstpt = vtx[vidx].pt; } return vidx; } Point2f Subdiv2D::getVertex(int vertex, CV_OUT int* firstEdge) const { CV_DbgAssert((size_t)vertex < vtx.size()); if( firstEdge ) *firstEdge = vtx[vertex].firstEdge; return vtx[vertex].pt; } Subdiv2D::Subdiv2D() { validGeometry = false; freeQEdge = 0; freePoint = 0; recentEdge = 0; } Subdiv2D::Subdiv2D(Rect rect) { validGeometry = false; freeQEdge = 0; freePoint = 0; recentEdge = 0; initDelaunay(rect); } Subdiv2D::QuadEdge::QuadEdge() { next[0] = next[1] = next[2] = next[3] = 0; pt[0] = pt[1] = pt[2] = pt[3] = 0; } Subdiv2D::QuadEdge::QuadEdge(int edgeidx) { next[0] = edgeidx; next[1] = edgeidx+3; next[2] = edgeidx+2; next[3] = edgeidx+1; pt[0] = pt[1] = pt[2] = pt[3] = 0; } bool Subdiv2D::QuadEdge::isfree() const { return next[0] <= 0; } Subdiv2D::Vertex::Vertex() { firstEdge = 0; type = -1; } Subdiv2D::Vertex::Vertex(Point2f _pt, bool _isvirtual, int _firstEdge) { firstEdge = _firstEdge; type = (int)_isvirtual; pt = _pt; } bool Subdiv2D::Vertex::isvirtual() const { return type > 0; } bool Subdiv2D::Vertex::isfree() const { return firstEdge <= 0; } void Subdiv2D::splice( int edgeA, int edgeB ) { int& a_next = qedges[edgeA >> 2].next[edgeA & 3]; int& b_next = qedges[edgeB >> 2].next[edgeB & 3]; int a_rot = rotateEdge(a_next, 1); int b_rot = rotateEdge(b_next, 1); int& a_rot_next = qedges[a_rot >> 2].next[a_rot & 3]; int& b_rot_next = qedges[b_rot >> 2].next[b_rot & 3]; std::swap(a_next, b_next); std::swap(a_rot_next, b_rot_next); } void Subdiv2D::setEdgePoints(int edge, int orgPt, int dstPt) { qedges[edge >> 2].pt[edge & 3] = orgPt; qedges[edge >> 2].pt[(edge + 2) & 3] = dstPt; } int Subdiv2D::connectEdges( int edgeA, int edgeB ) { int edge = newEdge(); splice(edge, getEdge(edgeA, NEXT_AROUND_LEFT)); splice(symEdge(edge), edgeB); setEdgePoints(edge, edgeDst(edgeA), edgeOrg(edgeB)); return edge; } void Subdiv2D::swapEdges( int edge ) { int sedge = symEdge(edge); int a = getEdge(edge, PREV_AROUND_ORG); int b = getEdge(sedge, PREV_AROUND_ORG); splice(edge, a); splice(sedge, b); setEdgePoints(edge, edgeDst(a), edgeDst(b)); splice(edge, getEdge(a, NEXT_AROUND_LEFT)); splice(sedge, getEdge(b, NEXT_AROUND_LEFT)); } int Subdiv2D::isRightOf(Point2f pt, int edge) const { Point2f org, dst; edgeOrg(edge, &org); edgeDst(edge, &dst); double cw_area = cvTriangleArea( pt, dst, org ); return (cw_area > 0) - (cw_area < 0); } int Subdiv2D::newEdge() { if( freeQEdge == 0 ) { qedges.push_back(QuadEdge()); freeQEdge = (int)(qedges.size()-1); } int edge = freeQEdge*4; freeQEdge = qedges[edge >> 2].next[1]; qedges[edge >> 2] = QuadEdge(edge); return edge; } void Subdiv2D::deleteEdge(int edge) { CV_DbgAssert((size_t)(edge >> 2) < (size_t)qedges.size()); splice( edge, getEdge(edge, PREV_AROUND_ORG) ); int sedge = symEdge(edge); splice(sedge, getEdge(sedge, PREV_AROUND_ORG) ); edge >>= 2; qedges[edge].next[0] = -1; qedges[edge].next[1] = freeQEdge; freeQEdge = edge; } int Subdiv2D::newPoint(Point2f pt, bool isvirtual, int firstEdge) { if( freePoint == 0 ) { vtx.push_back(Vertex()); freePoint = (int)(vtx.size()-1); vtx[freePoint].type = -1; vtx[freePoint].firstEdge = 0; } int vidx = freePoint; freePoint = vtx[vidx].firstEdge; vtx[vidx] = Vertex(pt, isvirtual, firstEdge); return vidx; } void Subdiv2D::deletePoint(int vidx) { CV_DbgAssert( (size_t)vidx < vtx.size() ); vtx[vidx].firstEdge = freePoint; vtx[vidx].type = -1; freePoint = vidx; } int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex) { int vertex = 0; int i, maxEdges = (int)(qedges.size() * 4); int edge = recentEdge; CV_Assert(edge > 0); if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y ) CV_Error( CV_StsOutOfRange, "" ); int location = PTLOC_ERROR; int right_of_curr = isRightOf(pt, edge); if( right_of_curr > 0 ) { edge = symEdge(edge); right_of_curr = -right_of_curr; } for( i = 0; i < maxEdges; i++ ) { int onext_edge = nextEdge( edge ); int dprev_edge = getEdge( edge, PREV_AROUND_DST ); int right_of_onext = isRightOf( pt, onext_edge ); int right_of_dprev = isRightOf( pt, dprev_edge ); if( right_of_dprev > 0 ) { if( right_of_onext > 0 || (right_of_onext == 0 && right_of_curr == 0) ) { location = PTLOC_INSIDE; break; } else { right_of_curr = right_of_onext; edge = onext_edge; } } else { if( right_of_onext > 0 ) { if( right_of_dprev == 0 && right_of_curr == 0 ) { location = PTLOC_INSIDE; break; } else { right_of_curr = right_of_dprev; edge = dprev_edge; } } else if( right_of_curr == 0 && isRightOf( vtx[edgeDst(onext_edge)].pt, edge ) >= 0 ) { edge = symEdge( edge ); } else { right_of_curr = right_of_onext; edge = onext_edge; } } } recentEdge = edge; if( location == PTLOC_INSIDE ) { Point2f org_pt, dst_pt; edgeOrg(edge, &org_pt); edgeDst(edge, &dst_pt); double t1 = fabs( pt.x - org_pt.x ); t1 += fabs( pt.y - org_pt.y ); double t2 = fabs( pt.x - dst_pt.x ); t2 += fabs( pt.y - dst_pt.y ); double t3 = fabs( org_pt.x - dst_pt.x ); t3 += fabs( org_pt.y - dst_pt.y ); if( t1 < FLT_EPSILON ) { location = PTLOC_VERTEX; vertex = edgeOrg( edge ); edge = 0; } else if( t2 < FLT_EPSILON ) { location = PTLOC_VERTEX; vertex = edgeDst( edge ); edge = 0; } else if( (t1 < t3 || t2 < t3) && fabs( cvTriangleArea( pt, org_pt, dst_pt )) < FLT_EPSILON ) { location = PTLOC_ON_EDGE; vertex = 0; } } if( location == PTLOC_ERROR ) { edge = 0; vertex = 0; } _edge = edge; _vertex = vertex; return location; } inline bool isPtInCircle3( Point2f pt, Point2f a, Point2f b, Point2f c) { const double eps = FLT_EPSILON*0.125; double val = ((double)a.x * a.x + (double)a.y * a.y) * cvTriangleArea( b, c, pt ); val -= ((double)b.x * b.x + (double)b.y * b.y) * cvTriangleArea( a, c, pt ); val += ((double)c.x * c.x + (double)c.y * c.y) * cvTriangleArea( a, b, pt ); val -= ((double)pt.x * pt.x + (double)pt.y * pt.y) * cvTriangleArea( a, b, c ); return val > eps ? 1 : val < -eps ? -1 : 0; } int Subdiv2D::insert(Point2f pt) { int curr_point = 0, curr_edge = 0, deleted_edge = 0; int location = locate( pt, curr_edge, curr_point ); if( location == PTLOC_ERROR ) CV_Error( CV_StsBadSize, "" ); if( location == PTLOC_OUTSIDE_RECT ) CV_Error( CV_StsOutOfRange, "" ); if( location == PTLOC_VERTEX ) return curr_point; if( location == PTLOC_ON_EDGE ) { deleted_edge = curr_edge; recentEdge = curr_edge = getEdge( curr_edge, PREV_AROUND_ORG ); deleteEdge(deleted_edge); } else if( location == PTLOC_INSIDE ) ; else CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) ); assert( curr_edge != 0 ); validGeometry = false; curr_point = newPoint(pt, false); int base_edge = newEdge(); int first_point = edgeOrg(curr_edge); setEdgePoints(base_edge, first_point, curr_point); splice(base_edge, curr_edge); do { base_edge = connectEdges( curr_edge, symEdge(base_edge) ); curr_edge = getEdge(base_edge, PREV_AROUND_ORG); } while( edgeDst(curr_edge) != first_point ); curr_edge = getEdge( base_edge, PREV_AROUND_ORG ); int i, max_edges = qedges.size()*4; for( i = 0; i < max_edges; i++ ) { int temp_dst = 0, curr_org = 0, curr_dst = 0; int temp_edge = getEdge( curr_edge, PREV_AROUND_ORG ); temp_dst = edgeDst( temp_edge ); curr_org = edgeOrg( curr_edge ); curr_dst = edgeDst( curr_edge ); if( isRightOf( vtx[temp_dst].pt, curr_edge ) > 0 && isPtInCircle3( vtx[curr_org].pt, vtx[temp_dst].pt, vtx[curr_dst].pt, vtx[curr_point].pt ) < 0 ) { swapEdges( curr_edge ); curr_edge = getEdge( curr_edge, PREV_AROUND_ORG ); } else if( curr_org == first_point ) break; else curr_edge = getEdge( nextEdge( curr_edge ), PREV_AROUND_LEFT ); } return curr_point; } void Subdiv2D::insert(const vector& ptvec) { for( size_t i = 0; i < ptvec.size(); i++ ) insert(ptvec[i]); } void Subdiv2D::initDelaunay( Rect rect ) { float big_coord = 3.f * MAX( rect.width, rect.height ); float rx = (float)rect.x; float ry = (float)rect.y; vtx.clear(); qedges.clear(); recentEdge = 0; validGeometry = false; topLeft = Point2f( rx, ry ); bottomRight = Point2f( rx + rect.width, ry + rect.height ); Point2f ppA( rx + big_coord, ry ); Point2f ppB( rx, ry + big_coord ); Point2f ppC( rx - big_coord, ry - big_coord ); vtx.push_back(Vertex()); qedges.push_back(QuadEdge()); freeQEdge = 0; freePoint = 0; int pA = newPoint(ppA, false); int pB = newPoint(ppB, false); int pC = newPoint(ppC, false); int edge_AB = newEdge(); int edge_BC = newEdge(); int edge_CA = newEdge(); setEdgePoints( edge_AB, pA, pB ); setEdgePoints( edge_BC, pB, pC ); setEdgePoints( edge_CA, pC, pA ); splice( edge_AB, symEdge( edge_CA )); splice( edge_BC, symEdge( edge_AB )); splice( edge_CA, symEdge( edge_BC )); recentEdge = edge_AB; } void Subdiv2D::clearVoronoi() { size_t i, total = qedges.size(); for( i = 0; i < total; i++ ) qedges[i].pt[1] = qedges[i].pt[3] = 0; total = vtx.size(); for( i = 0; i < total; i++ ) { if( vtx[i].isvirtual() ) deletePoint((int)i); } validGeometry = false; } static Point2f computeVoronoiPoint(Point2f org0, Point2f dst0, Point2f org1, Point2f dst1) { double a0 = dst0.x - org0.x; double b0 = dst0.y - org0.y; double c0 = -0.5*(a0 * (dst0.x + org0.x) + b0 * (dst0.y + org0.y)); double a1 = dst1.x - org1.x; double b1 = dst1.y - org1.y; double c1 = -0.5*(a1 * (dst1.x + org1.x) + b1 * (dst1.y + org1.y)); double det = a0 * b1 - a1 * b0; if( det != 0 ) { det = 1. / det; return Point2f((float) ((b0 * c1 - b1 * c0) * det), (float) ((a1 * c0 - a0 * c1) * det)); } return Point2f(FLT_MAX, FLT_MAX); } void Subdiv2D::calcVoronoi() { // check if it is already calculated if( validGeometry ) return; clearVoronoi(); int i, total = (int)qedges.size(); // loop through all quad-edges, except for the first 3 (#1, #2, #3 - 0 is reserved for "NULL" pointer) for( i = 4; i < total; i++ ) { QuadEdge& quadedge = qedges[i]; if( quadedge.isfree() ) continue; int edge0 = (int)(i*4); Point2f org0, dst0, org1, dst1; if( !quadedge.pt[3] ) { int edge1 = getEdge( edge0, NEXT_AROUND_LEFT ); int edge2 = getEdge( edge1, NEXT_AROUND_LEFT ); edgeOrg(edge0, &org0); edgeDst(edge0, &dst0); edgeOrg(edge1, &org1); edgeDst(edge1, &dst1); Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1); if( fabs( virt_point.x ) < FLT_MAX * 0.5 && fabs( virt_point.y ) < FLT_MAX * 0.5 ) { quadedge.pt[3] = qedges[edge1 >> 2].pt[3 - (edge1 & 2)] = qedges[edge2 >> 2].pt[3 - (edge2 & 2)] = newPoint(virt_point, true); } } if( !quadedge.pt[1] ) { int edge1 = getEdge( edge0, NEXT_AROUND_RIGHT ); int edge2 = getEdge( edge1, NEXT_AROUND_RIGHT ); edgeOrg(edge0, &org0); edgeDst(edge0, &dst0); edgeOrg(edge1, &org1); edgeDst(edge1, &dst1); Point2f virt_point = computeVoronoiPoint(org0, dst0, org1, dst1); if( fabs( virt_point.x ) < FLT_MAX * 0.5 && fabs( virt_point.y ) < FLT_MAX * 0.5 ) { quadedge.pt[1] = qedges[edge1 >> 2].pt[1 + (edge1 & 2)] = qedges[edge2 >> 2].pt[1 + (edge2 & 2)] = newPoint(virt_point, true); } } } validGeometry = true; } static int isRightOf2( const Point2f& pt, const Point2f& org, const Point2f& diff ) { double cw_area = ((double)org.x - pt.x)*diff.y - ((double)org.y - pt.y)*diff.x; return (cw_area > 0) - (cw_area < 0); } int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt) { if( !validGeometry ) calcVoronoi(); int vertex = 0, edge = 0; int loc = locate( pt, edge, vertex ); if( loc != PTLOC_ON_EDGE && loc != PTLOC_INSIDE ) return vertex; vertex = 0; Point2f start; edgeOrg(edge, &start); Point2f diff = pt - start; edge = rotateEdge(edge, 1); int i, total = (int)vtx.size(); for( i = 0; i < total; i++ ) { Point2f t; for(;;) { CV_Assert( edgeDst(edge, &t) > 0 ); if( isRightOf2( t, start, diff ) >= 0 ) break; edge = getEdge( edge, NEXT_AROUND_LEFT ); } for(;;) { CV_Assert( edgeOrg( edge, &t ) > 0 ); if( isRightOf2( t, start, diff ) < 0 ) break; edge = getEdge( edge, PREV_AROUND_LEFT ); } Point2f tempDiff; edgeDst(edge, &tempDiff); edgeOrg(edge, &t); tempDiff -= t; if( isRightOf2( pt, t, tempDiff ) >= 0 ) { vertex = edgeOrg(rotateEdge( edge, 3 )); break; } edge = symEdge( edge ); } if( nearestPt && vertex > 0 ) *nearestPt = vtx[vertex].pt; return vertex; } void Subdiv2D::getTriangleList(vector& triangleList) { vector processed(vtx.size(), false); processed[0] = true; calcVoronoi(); triangleList.clear(); for( size_t i = 4; i < qedges.size(); i++ ) { if( qedges[i].isfree() ) continue; int e0 = (int)(i*4), e1 = rotateEdge(e0, 1), e; int vidx0 = edgeOrg(e1), vidx1 = edgeDst(e1); Point2f a, b, c; if( !processed[vidx0] ) { edgeOrg(e0, &a); edgeDst(e0, &b); e = getEdge(e0, NEXT_AROUND_LEFT); edgeDst(e, &c); triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y)); processed[vidx0] = true; } if( !processed[vidx1] ) { edgeDst(e0, &a); edgeOrg(e0, &b); e = getEdge(e0, PREV_AROUND_RIGHT); edgeOrg(e, &c); triangleList.push_back(Vec6f(a.x, a.y, b.x, b.y, c.x, c.y)); processed[vidx1] = true; } } } void Subdiv2D::getVoronoiFacetList(const vector& idx, CV_OUT vector >& facetList) { calcVoronoi(); facetList.clear(); vector buf; size_t i, total; if( idx.empty() ) i = 4, total = vtx.size(); else i = 0, total = idx.size(); for( ; i < total; i++ ) { int k = idx.empty() ? (int)i : idx[i]; if( vtx[k].isvirtual() ) continue; int edge = rotateEdge(vtx[k].firstEdge, 1), t = edge; // gather points buf.clear(); do { buf.push_back(vtx[edgeOrg(t)].pt); t = getEdge( t, NEXT_AROUND_LEFT ); } while( t != edge ); facetList.push_back(buf); } } } using namespace cv; using namespace std; static void help() { cout << "\nThis program demostrates iterative construction of\n" "delaunay triangulation and voronoi tesselation.\n" "It draws a random set of points in an image and then delaunay triangulates them.\n" "Usage: \n" "./delaunay \n" "\nThis program builds the traingulation interactively, you may stop this process by\n" "hitting any key.\n"; } static void draw_subdiv_point( Mat& img, Point2f fp, Scalar color ) { circle( img, fp, 3, color, CV_FILLED, 8, 0 ); } static void draw_subdiv( Mat& img, Subdiv2D& subdiv, Scalar delaunay_color ) { vector triangleList; subdiv.getTriangleList(triangleList); vector pt(3); for( size_t i = 0; i < triangleList.size(); i++ ) { Vec6f t = triangleList[i]; pt[0] = Point(cvRound(t[0]), cvRound(t[1])); pt[1] = Point(cvRound(t[2]), cvRound(t[3])); pt[2] = Point(cvRound(t[4]), cvRound(t[5])); line(img, pt[0], pt[1], delaunay_color, 1, CV_AA, 0); line(img, pt[1], pt[2], delaunay_color, 1, CV_AA, 0); line(img, pt[2], pt[0], delaunay_color, 1, CV_AA, 0); } } static void locate_point( Mat& img, Subdiv2D& subdiv, Point2f fp, Scalar active_color ) { int e0=0, vertex=0; subdiv.locate(fp, e0, vertex); if( e0 > 0 ) { int e = e0; do { Point2f org, dst; if( subdiv.edgeOrg(e, &org) > 0 && subdiv.edgeDst(e, &dst) > 0 ) line( img, org, dst, active_color, 3, CV_AA, 0 ); e = subdiv.getEdge(e, Subdiv2D::NEXT_AROUND_LEFT); } while( e != e0 ); } draw_subdiv_point( img, fp, active_color ); } void paint_voronoi( Mat& img, Subdiv2D& subdiv ) { vector > facets; subdiv.getVoronoiFacetList(vector(), facets); vector ifacet; vector > ifacets(1); for( size_t i = 0; i < facets.size(); i++ ) { ifacet.resize(facets[i].size()); for( size_t j = 0; j < facets[i].size(); j++ ) ifacet[j] = facets[i][j]; Scalar color; color[0] = rand() & 256; color[1] = rand() & 256; color[2] = rand() & 256; fillConvexPoly(img, ifacet, color, 8, 0); ifacets[0] = ifacet; polylines(img, ifacets, true, Scalar(), 1, CV_AA, 0); } } int main( int, char** ) { help(); Scalar active_facet_color(0, 0, 255), delaunay_color(255,255,255); Rect rect(0, 0, 600, 600); Subdiv2D subdiv(rect); Mat img(rect.size(), CV_8UC3); img = Scalar::all(0); string win = "Delaunay Demo"; imshow(win, img); for( int i = 0; i < 200; i++ ) { Point2f fp( (float)(rand()%(rect.width-10)+5), (float)(rand()%(rect.height-10)+5)); locate_point( img, subdiv, fp, active_facet_color ); imshow( win, img ); if( waitKey( 100 ) >= 0 ) break; subdiv.insert(fp); img = Scalar::all(0); draw_subdiv( img, subdiv, delaunay_color ); imshow( win, img ); if( waitKey( 100 ) >= 0 ) break; } img = Scalar::all(0); paint_voronoi( img, subdiv ); imshow( win, img ); waitKey(0); return 0; }