/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_GPU_HPP__ #define __OPENCV_GPU_HPP__ #include #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/gpu/devmem2d.hpp" #include "opencv2/features2d/features2d.hpp" namespace cv { namespace gpu { //////////////////////////////// Initialization & Info //////////////////////// //! This is the only function that do not throw exceptions if the library is compiled without Cuda. CV_EXPORTS int getCudaEnabledDeviceCount(); //! Functions below throw cv::Expception if the library is compiled without Cuda. CV_EXPORTS void setDevice(int device); CV_EXPORTS int getDevice(); //! Explicitly destroys and cleans up all resources associated with the current device in the current process. //! Any subsequent API call to this device will reinitialize the device. CV_EXPORTS void resetDevice(); enum FeatureSet { FEATURE_SET_COMPUTE_10 = 10, FEATURE_SET_COMPUTE_11 = 11, FEATURE_SET_COMPUTE_12 = 12, FEATURE_SET_COMPUTE_13 = 13, FEATURE_SET_COMPUTE_20 = 20, FEATURE_SET_COMPUTE_21 = 21, GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11, NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13 }; // Gives information about what GPU archs this OpenCV GPU module was // compiled for class CV_EXPORTS TargetArchs { public: static bool builtWith(FeatureSet feature_set); static bool has(int major, int minor); static bool hasPtx(int major, int minor); static bool hasBin(int major, int minor); static bool hasEqualOrLessPtx(int major, int minor); static bool hasEqualOrGreater(int major, int minor); static bool hasEqualOrGreaterPtx(int major, int minor); static bool hasEqualOrGreaterBin(int major, int minor); private: TargetArchs(); }; // Gives information about the given GPU class CV_EXPORTS DeviceInfo { public: // Creates DeviceInfo object for the current GPU DeviceInfo() : device_id_(getDevice()) { query(); } // Creates DeviceInfo object for the given GPU DeviceInfo(int device_id) : device_id_(device_id) { query(); } string name() const { return name_; } // Return compute capability versions int majorVersion() const { return majorVersion_; } int minorVersion() const { return minorVersion_; } int multiProcessorCount() const { return multi_processor_count_; } size_t freeMemory() const; size_t totalMemory() const; // Checks whether device supports the given feature bool supports(FeatureSet feature_set) const; // Checks whether the GPU module can be run on the given device bool isCompatible() const; int deviceID() const { return device_id_; } private: void query(); void queryMemory(size_t& free_memory, size_t& total_memory) const; int device_id_; string name_; int multi_processor_count_; int majorVersion_; int minorVersion_; }; //////////////////////////////// Error handling //////////////////////// CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func); CV_EXPORTS void nppError( int err, const char *file, const int line, const char *func); //////////////////////////////// GpuMat //////////////////////////////// class Stream; class CudaMem; //! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat. class CV_EXPORTS GpuMat { public: //! default constructor GpuMat(); //! constructs GpuMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.) GpuMat(int rows, int cols, int type); GpuMat(Size size, int type); //! constucts GpuMatrix and fills it with the specified value _s. GpuMat(int rows, int cols, int type, const Scalar& s); GpuMat(Size size, int type, const Scalar& s); //! copy constructor GpuMat(const GpuMat& m); //! constructor for GpuMatrix headers pointing to user-allocated data GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP); GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP); //! creates a matrix header for a part of the bigger matrix GpuMat(const GpuMat& m, const Range& rowRange, const Range& colRange); GpuMat(const GpuMat& m, const Rect& roi); //! builds GpuMat from Mat. Perfom blocking upload to device. explicit GpuMat (const Mat& m); //! destructor - calls release() ~GpuMat(); //! assignment operators GpuMat& operator = (const GpuMat& m); //! assignment operator. Perfom blocking upload to device. GpuMat& operator = (const Mat& m); //! returns lightweight DevMem2D_ structure for passing to nvcc-compiled code. // Contains just image size, data ptr and step. template operator DevMem2D_() const; template operator PtrStep_() const; //! pefroms blocking upload data to GpuMat. void upload(const cv::Mat& m); //! upload async void upload(const CudaMem& m, Stream& stream); //! downloads data from device to host memory. Blocking calls. operator Mat() const; void download(cv::Mat& m) const; //! download async void download(CudaMem& m, Stream& stream) const; //! returns a new GpuMatrix header for the specified row GpuMat row(int y) const; //! returns a new GpuMatrix header for the specified column GpuMat col(int x) const; //! ... for the specified row span GpuMat rowRange(int startrow, int endrow) const; GpuMat rowRange(const Range& r) const; //! ... for the specified column span GpuMat colRange(int startcol, int endcol) const; GpuMat colRange(const Range& r) const; //! returns deep copy of the GpuMatrix, i.e. the data is copied GpuMat clone() const; //! copies the GpuMatrix content to "m". // It calls m.create(this->size(), this->type()). void copyTo( GpuMat& m ) const; //! copies those GpuMatrix elements to "m" that are marked with non-zero mask elements. void copyTo( GpuMat& m, const GpuMat& mask ) const; //! converts GpuMatrix to another datatype with optional scalng. See cvConvertScale. void convertTo( GpuMat& m, int rtype, double alpha=1, double beta=0 ) const; void assignTo( GpuMat& m, int type=-1 ) const; //! sets every GpuMatrix element to s GpuMat& operator = (const Scalar& s); //! sets some of the GpuMatrix elements to s, according to the mask GpuMat& setTo(const Scalar& s, const GpuMat& mask = GpuMat()); //! creates alternative GpuMatrix header for the same data, with different // number of channels and/or different number of rows. see cvReshape. GpuMat reshape(int cn, int rows = 0) const; //! allocates new GpuMatrix data unless the GpuMatrix already has specified size and type. // previous data is unreferenced if needed. void create(int rows, int cols, int type); void create(Size size, int type); //! decreases reference counter; // deallocate the data when reference counter reaches 0. void release(); //! swaps with other smart pointer void swap(GpuMat& mat); //! locates GpuMatrix header within a parent GpuMatrix. See below void locateROI( Size& wholeSize, Point& ofs ) const; //! moves/resizes the current GpuMatrix ROI inside the parent GpuMatrix. GpuMat& adjustROI( int dtop, int dbottom, int dleft, int dright ); //! extracts a rectangular sub-GpuMatrix // (this is a generalized form of row, rowRange etc.) GpuMat operator()( Range rowRange, Range colRange ) const; GpuMat operator()( const Rect& roi ) const; //! returns true iff the GpuMatrix data is continuous // (i.e. when there are no gaps between successive rows). // similar to CV_IS_GpuMat_CONT(cvGpuMat->type) bool isContinuous() const; //! returns element size in bytes, // similar to CV_ELEM_SIZE(cvMat->type) size_t elemSize() const; //! returns the size of element channel in bytes. size_t elemSize1() const; //! returns element type, similar to CV_MAT_TYPE(cvMat->type) int type() const; //! returns element type, similar to CV_MAT_DEPTH(cvMat->type) int depth() const; //! returns element type, similar to CV_MAT_CN(cvMat->type) int channels() const; //! returns step/elemSize1() size_t step1() const; //! returns GpuMatrix size: // width == number of columns, height == number of rows Size size() const; //! returns true if GpuMatrix data is NULL bool empty() const; //! returns pointer to y-th row uchar* ptr(int y = 0); const uchar* ptr(int y = 0) const; //! template version of the above method template _Tp* ptr(int y = 0); template const _Tp* ptr(int y = 0) const; //! matrix transposition GpuMat t() const; /*! includes several bit-fields: - the magic signature - continuity flag - depth - number of channels */ int flags; //! the number of rows and columns int rows, cols; //! a distance between successive rows in bytes; includes the gap if any size_t step; //! pointer to the data uchar* data; //! pointer to the reference counter; // when GpuMatrix points to user-allocated data, the pointer is NULL int* refcount; //! helper fields used in locateROI and adjustROI uchar* datastart; uchar* dataend; }; //#define TemplatedGpuMat // experimental now, deprecated to use #ifdef TemplatedGpuMat #include "GpuMat_BetaDeprecated.hpp" #endif //! Creates continuous GPU matrix CV_EXPORTS void createContinuous(int rows, int cols, int type, GpuMat& m); //! Ensures that size of the given matrix is not less than (rows, cols) size //! and matrix type is match specified one too CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m); //////////////////////////////// CudaMem //////////////////////////////// // CudaMem is limited cv::Mat with page locked memory allocation. // Page locked memory is only needed for async and faster coping to GPU. // It is convertable to cv::Mat header without reference counting // so you can use it with other opencv functions. class CV_EXPORTS CudaMem { public: enum { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 }; CudaMem(); CudaMem(const CudaMem& m); CudaMem(int rows, int cols, int type, int _alloc_type = ALLOC_PAGE_LOCKED); CudaMem(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED); //! creates from cv::Mat with coping data explicit CudaMem(const Mat& m, int alloc_type = ALLOC_PAGE_LOCKED); ~CudaMem(); CudaMem& operator = (const CudaMem& m); //! returns deep copy of the matrix, i.e. the data is copied CudaMem clone() const; //! allocates new matrix data unless the matrix already has specified size and type. void create(int rows, int cols, int type, int alloc_type = ALLOC_PAGE_LOCKED); void create(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED); //! decrements reference counter and released memory if needed. void release(); //! returns matrix header with disabled reference counting for CudaMem data. Mat createMatHeader() const; operator Mat() const; //! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware. GpuMat createGpuMatHeader() const; operator GpuMat() const; //returns if host memory can be mapperd to gpu address space; static bool canMapHostMemory(); // Please see cv::Mat for descriptions bool isContinuous() const; size_t elemSize() const; size_t elemSize1() const; int type() const; int depth() const; int channels() const; size_t step1() const; Size size() const; bool empty() const; // Please see cv::Mat for descriptions int flags; int rows, cols; size_t step; uchar* data; int* refcount; uchar* datastart; uchar* dataend; int alloc_type; }; //////////////////////////////// CudaStream //////////////////////////////// // Encapculates Cuda Stream. Provides interface for async coping. // Passed to each function that supports async kernel execution. // Reference counting is enabled class CV_EXPORTS Stream { public: Stream(); ~Stream(); Stream(const Stream&); Stream& operator=(const Stream&); bool queryIfComplete(); void waitForCompletion(); //! downloads asynchronously. // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat) void enqueueDownload(const GpuMat& src, CudaMem& dst); void enqueueDownload(const GpuMat& src, Mat& dst); //! uploads asynchronously. // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI) void enqueueUpload(const CudaMem& src, GpuMat& dst); void enqueueUpload(const Mat& src, GpuMat& dst); void enqueueCopy(const GpuMat& src, GpuMat& dst); void enqueueMemSet(GpuMat& src, Scalar val); void enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask); // converts matrix type, ex from float to uchar depending on type void enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a = 1, double b = 0); static Stream& Null(); operator bool() const; private: void create(); void release(); struct Impl; Impl *impl; friend struct StreamAccessor; explicit Stream(Impl* impl); }; ////////////////////////////// Arithmetics /////////////////////////////////// //! transposes the matrix //! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc) CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst, Stream& stream = Stream::Null()); //! reverses the order of the rows, columns or both in a matrix //! supports CV_8UC1, CV_8UC4 types CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode, Stream& stream = Stream::Null()); //! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i)) //! destination array will have the depth type as lut and the same channels number as source //! supports CV_8UC1, CV_8UC3 types CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null()); //! makes multi-channel array out of several single-channel arrays CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream = Stream::Null()); //! makes multi-channel array out of several single-channel arrays CV_EXPORTS void merge(const vector& src, GpuMat& dst, Stream& stream = Stream::Null()); //! copies each plane of a multi-channel array to a dedicated array CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, Stream& stream = Stream::Null()); //! copies each plane of a multi-channel array to a dedicated array CV_EXPORTS void split(const GpuMat& src, vector& dst, Stream& stream = Stream::Null()); //! computes magnitude of complex (x(i).re, x(i).im) vector //! supports only CV_32FC2 type CV_EXPORTS void magnitude(const GpuMat& x, GpuMat& magnitude, Stream& stream = Stream::Null()); //! computes squared magnitude of complex (x(i).re, x(i).im) vector //! supports only CV_32FC2 type CV_EXPORTS void magnitudeSqr(const GpuMat& x, GpuMat& magnitude, Stream& stream = Stream::Null()); //! computes magnitude of each (x(i), y(i)) vector //! supports only floating-point source CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null()); //! computes squared magnitude of each (x(i), y(i)) vector //! supports only floating-point source CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null()); //! computes angle (angle(i)) of each (x(i), y(i)) vector //! supports only floating-point source CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); //! converts Cartesian coordinates to polar //! supports only floating-point source CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); //! converts polar coordinates to Cartesian //! supports only floating-point source CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false, Stream& stream = Stream::Null()); //////////////////////////// Per-element operations //////////////////////////////////// //! adds one matrix to another (c = a + b) //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null()); //! adds scalar to a matrix (c = a + s) //! supports CV_32FC1 and CV_32FC2 type CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c, Stream& stream = Stream::Null()); //! subtracts one matrix from another (c = a - b) //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null()); //! subtracts scalar from a matrix (c = a - s) //! supports CV_32FC1 and CV_32FC2 type CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c, Stream& stream = Stream::Null()); //! computes element-wise product of the two arrays (c = a * b) //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null()); //! multiplies matrix to a scalar (c = a * s) //! supports CV_32FC1 type CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c, Stream& stream = Stream::Null()); //! computes element-wise quotient of the two arrays (c = a / b) //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null()); //! computes element-wise quotient of matrix and scalar (c = a / s) //! supports CV_32FC1 type CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c, Stream& stream = Stream::Null()); //! computes exponent of each matrix element (b = e**a) //! supports only CV_32FC1 type CV_EXPORTS void exp(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null()); //! computes natural logarithm of absolute value of each matrix element: b = log(abs(a)) //! supports only CV_32FC1 type CV_EXPORTS void log(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null()); //! computes element-wise absolute difference of two arrays (c = abs(a - b)) //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null()); //! computes element-wise absolute difference of array and scalar (c = abs(a - s)) //! supports only CV_32FC1 type CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c, Stream& stream = Stream::Null()); //! compares elements of two arrays (c = a b) //! supports CV_8UC4, CV_32FC1 types CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream = Stream::Null()); //! performs per-elements bit-wise inversion CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); //! calculates per-element bit-wise disjunction of two arrays CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); //! calculates per-element bit-wise conjunction of two arrays CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); //! calculates per-element bit-wise "exclusive or" operation CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); //! computes per-element minimum of two arrays (dst = min(src1, src2)) CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null()); //! computes per-element minimum of array and scalar (dst = min(src1, src2)) CV_EXPORTS void min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null()); //! computes per-element maximum of two arrays (dst = max(src1, src2)) CV_EXPORTS void max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null()); //! computes per-element maximum of array and scalar (dst = max(src1, src2)) CV_EXPORTS void max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null()); ////////////////////////////// Image processing ////////////////////////////// //! DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation. //! supports CV_8UC1, CV_8UC3 source types and CV_32FC1 map type CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap); //! Does mean shift filtering on GPU. CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); //! Does mean shift procedure on GPU. CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); //! Does mean shift segmentation with elimination of small regions. CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); //! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV. //! Supported types of input disparity: CV_8U, CV_16S. //! Output disparity has CV_8UC4 type in BGRA format (alpha = 255). CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null()); //! Reprojects disparity image to 3D space. //! Supports CV_8U and CV_16S types of input disparity. //! The output is a 4-channel floating-point (CV_32FC4) matrix. //! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map. //! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify. CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, Stream& stream = Stream::Null()); //! converts image from one color space to another CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null()); //! applies fixed threshold to the image CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxval, int type, Stream& stream = Stream::Null()); //! resizes the image //! Supports INTER_NEAREST, INTER_LINEAR //! supports CV_8UC1, CV_8UC4 types CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); //! warps the image using affine transformation //! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR, Stream& stream = Stream::Null()); //! warps the image using perspective transformation //! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR, Stream& stream = Stream::Null()); //! builds plane warping maps CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat& R, double f, double s, double dist, GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null()); //! builds cylindrical warping maps CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat& R, double f, double s, GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null()); //! builds spherical warping maps CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat& R, double f, double s, GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null()); //! rotate 8bit single or four channel image //! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC //! supports CV_8UC1, CV_8UC4 types CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); //! copies 2D array to a larger destination array and pads borders with user-specifiable constant //! supports CV_8UC1, CV_8UC4, CV_32SC1 and CV_32FC1 types CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value = Scalar(), Stream& stream = Stream::Null()); //! computes the integral image //! sum will have CV_32S type, but will contain unsigned int values //! supports only CV_8UC1 source type CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null()); //! buffered version CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null()); //! computes the integral image and integral for the squared image //! sum will have CV_32S type, sqsum - CV32F type //! supports only CV_8UC1 source type CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, GpuMat& sqsum, Stream& stream = Stream::Null()); //! computes squared integral image //! result matrix will have 64F type, but will contain 64U values //! supports source images of 8UC1 type only CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null()); //! computes vertical sum, supports only CV_32FC1 images CV_EXPORTS void columnSum(const GpuMat& src, GpuMat& sum); //! computes the standard deviation of integral images //! supports only CV_32SC1 source type and CV_32FC1 sqr type //! output will have CV_32FC1 type CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null()); //! computes Harris cornerness criteria at each image pixel CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType=BORDER_REFLECT101); //! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101); //! performs per-element multiplication of two full (not packed) Fourier spectrums //! supports 32FC2 matrixes only (interleaved format) CV_EXPORTS void mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB=false); //! performs per-element multiplication of two full (not packed) Fourier spectrums //! supports 32FC2 matrixes only (interleaved format) CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB=false); //! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix. //! Param dft_size is the size of DFT transform. //! //! If the source matrix is not continous, then additional copy will be done, //! so to avoid copying ensure the source matrix is continous one. If you want to use //! preallocated output ensure it is continuous too, otherwise it will be reallocated. //! //! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values //! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved. //! //! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format. CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0); //! computes convolution (or cross-correlation) of two images using discrete Fourier transform //! supports source images of 32FC1 type only //! result matrix will have 32FC1 type CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr=false); struct CV_EXPORTS ConvolveBuf; //! buffered version CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf); struct CV_EXPORTS ConvolveBuf { ConvolveBuf() {} ConvolveBuf(Size image_size, Size templ_size) { create(image_size, templ_size); } void create(Size image_size, Size templ_size); private: static Size estimateBlockSize(Size result_size, Size templ_size); friend void convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&); Size result_size; Size block_size; Size dft_size; int spect_len; GpuMat image_spect, templ_spect, result_spect; GpuMat image_block, templ_block, result_data; }; //! computes the proximity map for the raster template and the image where the template is searched for CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method); //! downsamples image CV_EXPORTS void downsample(const GpuMat& src, GpuMat& dst); //! upsamples image CV_EXPORTS void upsample(const GpuMat& src, GpuMat &dst); //! smoothes the source image and downsamples it CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst); //! upsamples the source image and then smoothes it CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst); //! performs linear blending of two images //! to avoid accuracy errors sum of weigths shouldn't be very close to zero CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, GpuMat& result, Stream& stream = Stream::Null()); ////////////////////////////// Matrix reductions ////////////////////////////// //! computes mean value and standard deviation of all or selected array elements //! supports only CV_8UC1 type CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev); //! computes norm of array //! supports NORM_INF, NORM_L1, NORM_L2 //! supports all matrices except 64F CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2); //! computes norm of array //! supports NORM_INF, NORM_L1, NORM_L2 //! supports all matrices except 64F CV_EXPORTS double norm(const GpuMat& src1, int normType, GpuMat& buf); //! computes norm of the difference between two arrays //! supports NORM_INF, NORM_L1, NORM_L2 //! supports only CV_8UC1 type CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2); //! computes sum of array elements //! supports only single channel images CV_EXPORTS Scalar sum(const GpuMat& src); //! computes sum of array elements //! supports only single channel images CV_EXPORTS Scalar sum(const GpuMat& src, GpuMat& buf); //! computes sum of array elements absolute values //! supports only single channel images CV_EXPORTS Scalar absSum(const GpuMat& src); //! computes sum of array elements absolute values //! supports only single channel images CV_EXPORTS Scalar absSum(const GpuMat& src, GpuMat& buf); //! computes squared sum of array elements //! supports only single channel images CV_EXPORTS Scalar sqrSum(const GpuMat& src); //! computes squared sum of array elements //! supports only single channel images CV_EXPORTS Scalar sqrSum(const GpuMat& src, GpuMat& buf); //! finds global minimum and maximum array elements and returns their values CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal=0, const GpuMat& mask=GpuMat()); //! finds global minimum and maximum array elements and returns their values CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf); //! finds global minimum and maximum array elements and returns their values with locations CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, const GpuMat& mask=GpuMat()); //! finds global minimum and maximum array elements and returns their values with locations CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf); //! counts non-zero array elements CV_EXPORTS int countNonZero(const GpuMat& src); //! counts non-zero array elements CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf); ///////////////////////////// Calibration 3D ////////////////////////////////// CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream = Stream::Null()); CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream = Stream::Null()); CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, vector* inliers=NULL); //////////////////////////////// Filter Engine //////////////////////////////// /*! The Base Class for 1D or Row-wise Filters This is the base class for linear or non-linear filters that process 1D data. In particular, such filters are used for the "horizontal" filtering parts in separable filters. */ class CV_EXPORTS BaseRowFilter_GPU { public: BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {} virtual ~BaseRowFilter_GPU() {} virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0; int ksize, anchor; }; /*! The Base Class for Column-wise Filters This is the base class for linear or non-linear filters that process columns of 2D arrays. Such filters are used for the "vertical" filtering parts in separable filters. */ class CV_EXPORTS BaseColumnFilter_GPU { public: BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {} virtual ~BaseColumnFilter_GPU() {} virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0; int ksize, anchor; }; /*! The Base Class for Non-Separable 2D Filters. This is the base class for linear or non-linear 2D filters. */ class CV_EXPORTS BaseFilter_GPU { public: BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {} virtual ~BaseFilter_GPU() {} virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0; Size ksize; Point anchor; }; /*! The Base Class for Filter Engine. The class can be used to apply an arbitrary filtering operation to an image. It contains all the necessary intermediate buffers. */ class CV_EXPORTS FilterEngine_GPU { public: virtual ~FilterEngine_GPU() {} virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0; }; //! returns the non-separable filter engine with the specified filter CV_EXPORTS Ptr createFilter2D_GPU(const Ptr& filter2D, int srcType, int dstType); //! returns the separable filter engine with the specified filters CV_EXPORTS Ptr createSeparableFilter_GPU(const Ptr& rowFilter, const Ptr& columnFilter, int srcType, int bufType, int dstType); //! returns horizontal 1D box filter //! supports only CV_8UC1 source type and CV_32FC1 sum type CV_EXPORTS Ptr getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1); //! returns vertical 1D box filter //! supports only CV_8UC1 sum type and CV_32FC1 dst type CV_EXPORTS Ptr getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1); //! returns 2D box filter //! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type CV_EXPORTS Ptr getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1)); //! returns box filter engine CV_EXPORTS Ptr createBoxFilter_GPU(int srcType, int dstType, const Size& ksize, const Point& anchor = Point(-1,-1)); //! returns 2D morphological filter //! only MORPH_ERODE and MORPH_DILATE are supported //! supports CV_8UC1 and CV_8UC4 types //! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height CV_EXPORTS Ptr getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize, Point anchor=Point(-1,-1)); //! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported. CV_EXPORTS Ptr createMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Point& anchor = Point(-1,-1), int iterations = 1); //! returns 2D filter with the specified kernel //! supports CV_8UC1 and CV_8UC4 types CV_EXPORTS Ptr getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Size& ksize, Point anchor = Point(-1, -1)); //! returns the non-separable linear filter engine CV_EXPORTS Ptr createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Point& anchor = Point(-1,-1)); //! returns the primitive row filter with the specified kernel. //! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type. //! there are two version of algorithm: NPP and OpenCV. //! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType, //! otherwise calls OpenCV version. //! NPP supports only BORDER_CONSTANT border type. //! OpenCV version supports only CV_32F as buffer depth and //! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types. CV_EXPORTS Ptr getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel, int anchor = -1, int borderType = BORDER_CONSTANT); //! returns the primitive column filter with the specified kernel. //! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type. //! there are two version of algorithm: NPP and OpenCV. //! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType, //! otherwise calls OpenCV version. //! NPP supports only BORDER_CONSTANT border type. //! OpenCV version supports only CV_32F as buffer depth and //! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types. CV_EXPORTS Ptr getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel, int anchor = -1, int borderType = BORDER_CONSTANT); //! returns the separable linear filter engine CV_EXPORTS Ptr createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); //! returns filter engine for the generalized Sobel operator CV_EXPORTS Ptr createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); //! returns the Gaussian filter engine CV_EXPORTS Ptr createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0, int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); //! returns maximum filter CV_EXPORTS Ptr getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1)); //! returns minimum filter CV_EXPORTS Ptr getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1)); //! smooths the image using the normalized box filter //! supports CV_8UC1, CV_8UC4 types CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null()); //! a synonym for normalized box filter static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null()) { boxFilter(src, dst, -1, ksize, anchor, stream); } //! erodes the image (applies the local minimum operator) CV_EXPORTS void erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null()); //! dilates the image (applies the local maximum operator) CV_EXPORTS void dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null()); //! applies an advanced morphological operation to the image CV_EXPORTS void morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null()); //! applies non-separable 2D linear filter to the image CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), Stream& stream = Stream::Null()); //! applies separable 2D linear filter to the image CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); //! applies generalized Sobel operator to the image CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); //! applies the vertical or horizontal Scharr operator to the image CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1, int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); //! smooths the image using Gaussian filter. CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0, int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); //! applies Laplacian operator to the image //! supports only ksize = 1 and ksize = 3 CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, Stream& stream = Stream::Null()); //////////////////////////////// Image Labeling //////////////////////////////// //!performs labeling via graph cuts CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf, Stream& stream = Stream::Null()); ////////////////////////////////// Histograms ////////////////////////////////// //! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type. CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel); //! Calculates histogram with evenly distributed bins for signle channel source. //! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types. //! Output hist will have one row and histSize cols and CV_32SC1 type. CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); //! Calculates histogram with evenly distributed bins for four-channel source. //! All channels of source are processed separately. //! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types. //! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type. CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); //! Calculates histogram with bins determined by levels array. //! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. //! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types. //! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type. CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null()); //! Calculates histogram with bins determined by levels array. //! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. //! All channels of source are processed separately. //! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types. //! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type. CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()); //////////////////////////////// StereoBM_GPU //////////////////////////////// class CV_EXPORTS StereoBM_GPU { public: enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 }; enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 }; //! the default constructor StereoBM_GPU(); //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8. StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ); //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair //! Output disparity has CV_8U type. void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); //! Some heuristics that tries to estmate // if current GPU will be faster than CPU in this algorithm. // It queries current active device. static bool checkIfGpuCallReasonable(); int preset; int ndisp; int winSize; // If avergeTexThreshold == 0 => post procesing is disabled // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold // i.e. input left image is low textured. float avergeTexThreshold; private: GpuMat minSSD, leBuf, riBuf; }; ////////////////////////// StereoBeliefPropagation /////////////////////////// // "Efficient Belief Propagation for Early Vision" // P.Felzenszwalb class CV_EXPORTS StereoBeliefPropagation { public: enum { DEFAULT_NDISP = 64 }; enum { DEFAULT_ITERS = 5 }; enum { DEFAULT_LEVELS = 5 }; static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); //! the default constructor explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_32F); //! the full constructor taking the number of disparities, number of BP iterations on each level, //! number of levels, truncation of data cost, data weight, //! truncation of discontinuity cost and discontinuity single jump //! DataTerm = data_weight * min(fabs(I2-I1), max_data_term) //! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term) //! please see paper for more details StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F); //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair, //! if disparity is empty output type will be CV_16S else output type will be disparity.type(). void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); //! version for user specified data term void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null()); int ndisp; int iters; int levels; float max_data_term; float data_weight; float max_disc_term; float disc_single_jump; int msg_type; private: GpuMat u, d, l, r, u2, d2, l2, r2; std::vector datas; GpuMat out; }; /////////////////////////// StereoConstantSpaceBP /////////////////////////// // "A Constant-Space Belief Propagation Algorithm for Stereo Matching" // Qingxiong Yang, Liang Wang, Narendra Ahuja // http://vision.ai.uiuc.edu/~qyang6/ class CV_EXPORTS StereoConstantSpaceBP { public: enum { DEFAULT_NDISP = 128 }; enum { DEFAULT_ITERS = 8 }; enum { DEFAULT_LEVELS = 4 }; enum { DEFAULT_NR_PLANE = 4 }; static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane); //! the default constructor explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F); //! the full constructor taking the number of disparities, number of BP iterations on each level, //! number of levels, number of active disparity on the first level, truncation of data cost, data weight, //! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F); //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair, //! if disparity is empty output type will be CV_16S else output type will be disparity.type(). void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); int ndisp; int iters; int levels; int nr_plane; float max_data_term; float data_weight; float max_disc_term; float disc_single_jump; int min_disp_th; int msg_type; bool use_local_init_data_cost; private: GpuMat u[2], d[2], l[2], r[2]; GpuMat disp_selected_pyr[2]; GpuMat data_cost; GpuMat data_cost_selected; GpuMat temp; GpuMat out; }; /////////////////////////// DisparityBilateralFilter /////////////////////////// // Disparity map refinement using joint bilateral filtering given a single color image. // Qingxiong Yang, Liang Wang, Narendra Ahuja // http://vision.ai.uiuc.edu/~qyang6/ class CV_EXPORTS DisparityBilateralFilter { public: enum { DEFAULT_NDISP = 64 }; enum { DEFAULT_RADIUS = 3 }; enum { DEFAULT_ITERS = 1 }; //! the default constructor explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS); //! the full constructor taking the number of disparities, filter radius, //! number of iterations, truncation of data continuity, truncation of disparity continuity //! and filter range sigma DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range); //! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image. //! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type. void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null()); private: int ndisp; int radius; int iters; float edge_threshold; float max_disc_threshold; float sigma_range; GpuMat table_color; GpuMat table_space; }; //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// struct CV_EXPORTS HOGDescriptor { enum { DEFAULT_WIN_SIGMA = -1 }; enum { DEFAULT_NLEVELS = 64 }; enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL }; HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, bool gamma_correction=true, int nlevels=DEFAULT_NLEVELS); size_t getDescriptorSize() const; size_t getBlockHistogramSize() const; void setSVMDetector(const vector& detector); static vector getDefaultPeopleDetector(); static vector getPeopleDetector48x96(); static vector getPeopleDetector64x128(); void detect(const GpuMat& img, vector& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size()); void detectMultiScale(const GpuMat& img, vector& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, int group_threshold=2); void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format=DESCR_FORMAT_COL_BY_COL); Size win_size; Size block_size; Size block_stride; Size cell_size; int nbins; double win_sigma; double threshold_L2hys; bool gamma_correction; int nlevels; protected: void computeBlockHistograms(const GpuMat& img); void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle); double getWinSigma() const; bool checkDetectorSize() const; static int numPartsWithin(int size, int part_size, int stride); static Size numPartsWithin(Size size, Size part_size, Size stride); // Coefficients of the separating plane float free_coef; GpuMat detector; // Results of the last classification step GpuMat labels, labels_buf; Mat labels_host; // Results of the last histogram evaluation step GpuMat block_hists, block_hists_buf; // Gradients conputation results GpuMat grad, qangle, grad_buf, qangle_buf; // returns subbuffer with required size, reallocates buffer if nessesary. static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf); static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf); std::vector image_scales; }; ////////////////////////////////// BruteForceMatcher ////////////////////////////////// class CV_EXPORTS BruteForceMatcher_GPU_base { public: enum DistType {L1Dist = 0, L2Dist, HammingDist}; explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist); // Add descriptors to train descriptor collection. void add(const std::vector& descCollection); // Get train descriptors collection. const std::vector& getTrainDescriptors() const; // Clear train descriptors collection. void clear(); // Return true if there are not train descriptors in collection. bool empty() const; // Return true if the matcher supports mask in match methods. bool isMaskSupported() const; // Find one best match for each query descriptor. // trainIdx.at(0, queryIdx) will contain best train index for queryIdx // distance.at(0, queryIdx) will contain distance void matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs, GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); // Download trainIdx and distance to CPU vector with DMatch static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector& matches); // Find one best match for each query descriptor. void match(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector& matches, const GpuMat& mask = GpuMat()); // Make gpu collection of trains and masks in suitable format for matchCollection function void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const vector& masks = std::vector()); // Find one best match from train collection for each query descriptor. // trainIdx.at(0, queryIdx) will contain best train index for queryIdx // imgIdx.at(0, queryIdx) will contain best image index for queryIdx // distance.at(0, queryIdx) will contain distance void matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection, Stream& stream = Stream::Null()); // Download trainIdx, imgIdx and distance to CPU vector with DMatch static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector& matches); // Find one best match from train collection for each query descriptor. void match(const GpuMat& queryDescs, std::vector& matches, const std::vector& masks = std::vector()); // Find k best matches for each query descriptor (in increasing order of distances). // trainIdx.at(queryIdx, i) will contain index of i'th best trains (i < k). // distance.at(queryIdx, i) will contain distance. // allDist is a buffer to store all distance between query descriptors and train descriptors // it have size (nQuery,nTrain) and CV_32F type // allDist.at(queryIdx, trainIdx) will contain FLT_MAX, if trainIdx is one from k best, // otherwise it will contain distance between queryIdx and trainIdx descriptors void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); // Download trainIdx and distance to CPU vector with DMatch // compactResult is used when mask is not empty. If compactResult is false matches // vector will have the same size as queryDescriptors rows. If compactResult is true // matches vector will not contain matches for fully masked out query descriptors. static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult = false); // Find k best matches for each query descriptor (in increasing order of distances). // compactResult is used when mask is not empty. If compactResult is false matches // vector will have the same size as queryDescriptors rows. If compactResult is true // matches vector will not contain matches for fully masked out query descriptors. void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector< std::vector >& matches, int k, const GpuMat& mask = GpuMat(), bool compactResult = false); // Find k best matches for each query descriptor (in increasing order of distances). // compactResult is used when mask is not empty. If compactResult is false matches // vector will have the same size as queryDescriptors rows. If compactResult is true // matches vector will not contain matches for fully masked out query descriptors. void knnMatch(const GpuMat& queryDescs, std::vector< std::vector >& matches, int knn, const std::vector& masks = std::vector(), bool compactResult = false ); // Find best matches for each query descriptor which have distance less than maxDistance. // nMatches.at(0, queruIdx) will contain matches count for queryIdx. // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, // because it didn't have enough memory. // trainIdx.at(queruIdx, i) will contain ith train index (i < min(nMatches.at(0, queruIdx), trainIdx.cols)) // distance.at(queruIdx, i) will contain ith distance (i < min(nMatches.at(0, queruIdx), trainIdx.cols)) // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x nTrain, // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches // Matches doesn't sorted. void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); // Download trainIdx, nMatches and distance to CPU vector with DMatch. // matches will be sorted in increasing order of distances. // compactResult is used when mask is not empty. If compactResult is false matches // vector will have the same size as queryDescriptors rows. If compactResult is true // matches vector will not contain matches for fully masked out query descriptors. static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult = false); // Find best matches for each query descriptor which have distance less than maxDistance // in increasing order of distances). void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector< std::vector >& matches, float maxDistance, const GpuMat& mask = GpuMat(), bool compactResult = false); // Find best matches from train collection for each query descriptor which have distance less than // maxDistance (in increasing order of distances). void radiusMatch(const GpuMat& queryDescs, std::vector< std::vector >& matches, float maxDistance, const std::vector& masks = std::vector(), bool compactResult = false); DistType distType; private: std::vector trainDescCollection; }; template class CV_EXPORTS BruteForceMatcher_GPU; template class CV_EXPORTS BruteForceMatcher_GPU< L1 > : public BruteForceMatcher_GPU_base { public: explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L1Dist) {} explicit BruteForceMatcher_GPU(L1 /*d*/) : BruteForceMatcher_GPU_base(L1Dist) {} }; template class CV_EXPORTS BruteForceMatcher_GPU< L2 > : public BruteForceMatcher_GPU_base { public: explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L2Dist) {} explicit BruteForceMatcher_GPU(L2 /*d*/) : BruteForceMatcher_GPU_base(L2Dist) {} }; template <> class CV_EXPORTS BruteForceMatcher_GPU< HammingLUT > : public BruteForceMatcher_GPU_base { public: explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(HammingDist) {} explicit BruteForceMatcher_GPU(HammingLUT /*d*/) : BruteForceMatcher_GPU_base(HammingDist) {} }; template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BruteForceMatcher_GPU_base { public: explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(HammingDist) {} explicit BruteForceMatcher_GPU(Hamming /*d*/) : BruteForceMatcher_GPU_base(HammingDist) {} }; ////////////////////////////////// CascadeClassifier_GPU ////////////////////////////////////////// // The cascade classifier class for object detection. class CV_EXPORTS CascadeClassifier_GPU { public: CascadeClassifier_GPU(); CascadeClassifier_GPU(const string& filename); ~CascadeClassifier_GPU(); bool empty() const; bool load(const string& filename); void release(); /* returns number of detected objects */ int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size()); bool findLargestObject; bool visualizeInPlace; Size getClassifierSize() const; private: struct CascadeClassifierImpl; CascadeClassifierImpl* impl; }; ////////////////////////////////// SURF ////////////////////////////////////////// class CV_EXPORTS SURF_GPU : public CvSURFParams { public: enum KeypointLayout { SF_X = 0, SF_Y, SF_LAPLACIAN, SF_SIZE, SF_DIR, SF_HESSIAN, SF_FEATURE_STRIDE }; //! the default constructor SURF_GPU(); //! the full constructor taking all the necessary parameters explicit SURF_GPU(double _hessianThreshold, int _nOctaves=4, int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false); //! returns the descriptor size in float's (64 or 128) int descriptorSize() const; //! upload host keypoints to device memory void uploadKeypoints(const vector& keypoints, GpuMat& keypointsGPU); //! download keypoints from device to host memory void downloadKeypoints(const GpuMat& keypointsGPU, vector& keypoints); //! download descriptors from device to host memory void downloadDescriptors(const GpuMat& descriptorsGPU, vector& descriptors); //! finds the keypoints using fast hessian detector used in SURF //! supports CV_8UC1 images //! keypoints will have nFeature cols and 6 rows //! keypoints.ptr(SF_X)[i] will contain x coordinate of i'th feature //! keypoints.ptr(SF_Y)[i] will contain y coordinate of i'th feature //! keypoints.ptr(SF_LAPLACIAN)[i] will contain laplacian sign of i'th feature //! keypoints.ptr(SF_SIZE)[i] will contain size of i'th feature //! keypoints.ptr(SF_DIR)[i] will contain orientation of i'th feature //! keypoints.ptr(SF_HESSIAN)[i] will contain response of i'th feature void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints); //! finds the keypoints and computes their descriptors. //! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors, bool useProvidedKeypoints = false); void operator()(const GpuMat& img, const GpuMat& mask, std::vector& keypoints); void operator()(const GpuMat& img, const GpuMat& mask, std::vector& keypoints, GpuMat& descriptors, bool useProvidedKeypoints = false); void operator()(const GpuMat& img, const GpuMat& mask, std::vector& keypoints, std::vector& descriptors, bool useProvidedKeypoints = false); //! max keypoints = min(keypointsRatio * img.size().area(), 65535) float keypointsRatio; GpuMat sum, mask1, maskSum, intBuffer; GpuMat det, trace; GpuMat maxPosBuffer; }; } //! Speckle filtering - filters small connected components on diparity image. //! It sets pixel (x,y) to newVal if it coresponds to small CC with size < maxSpeckleSize. //! Threshold for border between CC is diffThreshold; CV_EXPORTS void filterSpeckles( Mat& img, uchar newVal, int maxSpeckleSize, uchar diffThreshold, Mat& buf); } #include "opencv2/gpu/matrix_operations.hpp" #endif /* __OPENCV_GPU_HPP__ */