/* * gdal_image.cpp -- Load GIS data into OpenCV Containers using the Geospatial Data Abstraction Library */ // OpenCV Headers #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" // C++ Standard Libraries #include #include #include #include using namespace std; // define the corner points // Note that GDAL library can natively determine this cv::Point2d tl( -122.441017, 37.815664 ); cv::Point2d tr( -122.370919, 37.815311 ); cv::Point2d bl( -122.441533, 37.747167 ); cv::Point2d br( -122.3715, 37.746814 ); // determine dem corners cv::Point2d dem_bl( -122.0, 38); cv::Point2d dem_tr( -123.0, 37); // range of the heat map colors std::vector > color_range; // List of all function prototypes cv::Point2d lerp( const cv::Point2d&, const cv::Point2d&, const double& ); cv::Vec3b get_dem_color( const double& ); cv::Point2d world2dem( const cv::Point2d&, const cv::Size&); cv::Point2d pixel2world( const int&, const int&, const cv::Size& ); void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r ); /* * Linear Interpolation * p1 - Point 1 * p2 - Point 2 * t - Ratio from Point 1 to Point 2 */ cv::Point2d lerp( cv::Point2d const& p1, cv::Point2d const& p2, const double& t ){ return cv::Point2d( ((1-t)*p1.x) + (t*p2.x), ((1-t)*p1.y) + (t*p2.y)); } /* * Interpolate Colors */ template cv::Vec lerp( cv::Vec const& minColor, cv::Vec const& maxColor, double const& t ){ cv::Vec output; for( int i=0; i color_range.back().second ){ return color_range.back().first; } // otherwise, find the proper starting index int idx=0; double t = 0; for( int x=0; x<(int)(color_range.size()-1); x++ ){ // if the current elevation is below the next item, then use the current // two colors as our range if( elevation < color_range[x+1].second ){ idx=x; t = (color_range[x+1].second - elevation)/ (color_range[x+1].second - color_range[x].second); break; } } // interpolate the color return lerp( color_range[idx].first, color_range[idx+1].first, t); } /* * Given a pixel coordinate and the size of the input image, compute the pixel location * on the DEM image. */ cv::Point2d world2dem( cv::Point2d const& coordinate, const cv::Size& dem_size ){ // relate this to the dem points // ASSUMING THAT DEM DATA IS ORTHORECTIFIED double demRatioX = ((dem_tr.x - coordinate.x)/(dem_tr.x - dem_bl.x)); double demRatioY = 1-((dem_tr.y - coordinate.y)/(dem_tr.y - dem_bl.y)); cv::Point2d output; output.x = demRatioX * dem_size.width; output.y = demRatioY * dem_size.height; return output; } /* * Convert a pixel coordinate to world coordinates */ cv::Point2d pixel2world( const int& x, const int& y, const cv::Size& size ){ // compute the ratio of the pixel location to its dimension double rx = (double)x / size.width; double ry = (double)y / size.height; // compute LERP of each coordinate cv::Point2d rightSide = lerp(tr, br, ry); cv::Point2d leftSide = lerp(tl, bl, ry); // compute the actual Lat/Lon coordinate of the interpolated coordinate return lerp( leftSide, rightSide, rx ); } /* * Add color to a specific pixel color value */ void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r ){ if( pix[0] + b < 255 && pix[0] + b >= 0 ){ pix[0] += b; } if( pix[1] + g < 255 && pix[1] + g >= 0 ){ pix[1] += g; } if( pix[2] + r < 255 && pix[2] + r >= 0 ){ pix[2] += r; } } /* * Main Function */ int main( int argc, char* argv[] ){ /* * Check input arguments */ if( argc < 3 ){ cout << "usage: " << argv[0] << " " << endl; return -1; } // load the image (note that we don't have the projection information. You will // need to load that yourself or use the full GDAL driver. The values are pre-defined // at the top of this file cv::Mat image = cv::imread(argv[1], cv::IMREAD_LOAD_GDAL | cv::IMREAD_COLOR ); // load the dem model cv::Mat dem = cv::imread(argv[2], cv::IMREAD_LOAD_GDAL | cv::IMREAD_ANYDEPTH ); // create our output products cv::Mat output_dem( image.size(), CV_8UC3 ); cv::Mat output_dem_flood( image.size(), CV_8UC3 ); // for sanity sake, make sure GDAL Loads it as a signed short if( dem.type() != CV_16SC1 ){ throw std::runtime_error("DEM image type must be CV_16SC1"); } // define the color range to create our output DEM heat map // Pair format ( Color, elevation ); Push from low to high // Note: This would be perfect for a configuration file, but is here for a working demo. color_range.push_back( std::pair(cv::Vec3b( 188, 154, 46), -1)); color_range.push_back( std::pair(cv::Vec3b( 110, 220, 110), 0.25)); color_range.push_back( std::pair(cv::Vec3b( 150, 250, 230), 20)); color_range.push_back( std::pair(cv::Vec3b( 160, 220, 200), 75)); color_range.push_back( std::pair(cv::Vec3b( 220, 190, 170), 100)); color_range.push_back( std::pair(cv::Vec3b( 250, 180, 140), 200)); // define a minimum elevation double minElevation = -10; // iterate over each pixel in the image, computing the dem point for( int y=0; y= 0 && dem_coordinate.y >= 0 && dem_coordinate.x < dem.cols && dem_coordinate.y < dem.rows ){ dz = dem.at(dem_coordinate); }else{ dz = minElevation; } // write the pixel value to the file output_dem_flood.at(y,x) = image.at(y,x); // compute the color for the heat map output cv::Vec3b actualColor = get_dem_color(dz); output_dem.at(y,x) = actualColor; // show effect of a 10 meter increase in ocean levels if( dz < 10 ){ add_color( output_dem_flood.at(y,x), 90, 0, 0 ); } // show effect of a 50 meter increase in ocean levels else if( dz < 50 ){ add_color( output_dem_flood.at(y,x), 0, 90, 0 ); } // show effect of a 100 meter increase in ocean levels else if( dz < 100 ){ add_color( output_dem_flood.at(y,x), 0, 0, 90 ); } }} // print our heat map cv::imwrite( "heat-map.jpg" , output_dem ); // print the flooding effect image cv::imwrite( "flooded.jpg", output_dem_flood); return 0; }