/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "cuda_shared.hpp" using namespace cv::gpu; #define cudaSafeCall #define ROWSperTHREAD 21 // the number of rows a thread will process #define BLOCK_W 128 // the thread block width (464) #define N_DISPARITIES 8 #define STEREO_MIND 0 // The minimum d range to check #define STEREO_DISP_STEP N_DISPARITIES // the d step, must be <= 1 to avoid aliasing #define RADIUS 9 // Kernel Radius 5V & 5H = 11x11 kernel #define WINSZ (2 * RADIUS + 1) #define N_DIRTY_PIXELS (2 * RADIUS) #define COL_SSD_SIZE (BLOCK_W + N_DIRTY_PIXELS) #define SHARED_MEM_SIZE (COL_SSD_SIZE) // amount of shared memory used __constant__ unsigned int* cminSSDImage; __constant__ size_t cminSSD_step; __constant__ int cwidth; __constant__ int cheight; namespace device_code { __device__ int SQ(int a) { return a * a; } __device__ unsigned int CalcSSD(unsigned int *col_ssd_cache, unsigned int *col_ssd) { unsigned int cache = 0; unsigned int cache2 = 0; for(int i = 1; i <= RADIUS; i++) cache += col_ssd[i]; col_ssd_cache[0] = cache; __syncthreads(); if (threadIdx.x < BLOCK_W - RADIUS) cache2 = col_ssd_cache[RADIUS]; else for(int i = RADIUS + 1; i < WINSZ; i++) cache2 += col_ssd[i]; return col_ssd[0] + cache + cache2; } __device__ uint2 MinSSD(unsigned int *col_ssd_cache, unsigned int *col_ssd) { unsigned int ssd[N_DISPARITIES]; ssd[0] = CalcSSD(col_ssd_cache, col_ssd + 0 * SHARED_MEM_SIZE); ssd[1] = CalcSSD(col_ssd_cache, col_ssd + 1 * SHARED_MEM_SIZE); ssd[2] = CalcSSD(col_ssd_cache, col_ssd + 2 * SHARED_MEM_SIZE); ssd[3] = CalcSSD(col_ssd_cache, col_ssd + 3 * SHARED_MEM_SIZE); ssd[4] = CalcSSD(col_ssd_cache, col_ssd + 4 * SHARED_MEM_SIZE); ssd[5] = CalcSSD(col_ssd_cache, col_ssd + 5 * SHARED_MEM_SIZE); ssd[6] = CalcSSD(col_ssd_cache, col_ssd + 6 * SHARED_MEM_SIZE); ssd[7] = CalcSSD(col_ssd_cache, col_ssd + 7 * SHARED_MEM_SIZE); int mssd = min(min(min(ssd[0], ssd[1]), min(ssd[4], ssd[5])), min(min(ssd[2], ssd[3]), min(ssd[6], ssd[7]))); int bestIdx = 0; for (int i = 0; i < N_DISPARITIES; i++) { if (mssd == ssd[i]) bestIdx = i; } return make_uint2(mssd, bestIdx); } __device__ void StepDown(int idx1, int idx2, unsigned char* imageL, unsigned char* imageR, int d, unsigned int *col_ssd) { unsigned char leftPixel1; unsigned char leftPixel2; unsigned char rightPixel1[8]; unsigned char rightPixel2[8]; unsigned int diff1, diff2; leftPixel1 = imageL[idx1]; leftPixel2 = imageL[idx2]; idx1 = idx1 - d; idx2 = idx2 - d; rightPixel1[7] = imageR[idx1 - 7]; rightPixel1[0] = imageR[idx1 - 0]; rightPixel1[1] = imageR[idx1 - 1]; rightPixel1[2] = imageR[idx1 - 2]; rightPixel1[3] = imageR[idx1 - 3]; rightPixel1[4] = imageR[idx1 - 4]; rightPixel1[5] = imageR[idx1 - 5]; rightPixel1[6] = imageR[idx1 - 6]; rightPixel2[7] = imageR[idx2 - 7]; rightPixel2[0] = imageR[idx2 - 0]; rightPixel2[1] = imageR[idx2 - 1]; rightPixel2[2] = imageR[idx2 - 2]; rightPixel2[3] = imageR[idx2 - 3]; rightPixel2[4] = imageR[idx2 - 4]; rightPixel2[5] = imageR[idx2 - 5]; rightPixel2[6] = imageR[idx2 - 6]; diff1 = leftPixel1 - rightPixel1[0]; diff2 = leftPixel2 - rightPixel2[0]; col_ssd[0 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[1]; diff2 = leftPixel2 - rightPixel2[1]; col_ssd[1 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[2]; diff2 = leftPixel2 - rightPixel2[2]; col_ssd[2 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[3]; diff2 = leftPixel2 - rightPixel2[3]; col_ssd[3 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[4]; diff2 = leftPixel2 - rightPixel2[4]; col_ssd[4 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[5]; diff2 = leftPixel2 - rightPixel2[5]; col_ssd[5 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[6]; diff2 = leftPixel2 - rightPixel2[6]; col_ssd[6 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); diff1 = leftPixel1 - rightPixel1[7]; diff2 = leftPixel2 - rightPixel2[7]; col_ssd[7 * SHARED_MEM_SIZE] += SQ(diff2) - SQ(diff1); } __device__ void InitColSSD(int x_tex, int y_tex, int im_pitch, unsigned char* imageL, unsigned char* imageR, int d, unsigned int *col_ssd) { unsigned char leftPixel1; int idx; unsigned int diffa[] = {0, 0, 0, 0, 0, 0, 0, 0}; for(int i = 0; i < WINSZ; i++) { idx = y_tex * im_pitch + x_tex; leftPixel1 = imageL[idx]; idx = idx - d; diffa[0] += SQ(leftPixel1 - imageR[idx - 0]); diffa[1] += SQ(leftPixel1 - imageR[idx - 1]); diffa[2] += SQ(leftPixel1 - imageR[idx - 2]); diffa[3] += SQ(leftPixel1 - imageR[idx - 3]); diffa[4] += SQ(leftPixel1 - imageR[idx - 4]); diffa[5] += SQ(leftPixel1 - imageR[idx - 5]); diffa[6] += SQ(leftPixel1 - imageR[idx - 6]); diffa[7] += SQ(leftPixel1 - imageR[idx - 7]); y_tex += 1; } col_ssd[0 * SHARED_MEM_SIZE] = diffa[0]; col_ssd[1 * SHARED_MEM_SIZE] = diffa[1]; col_ssd[2 * SHARED_MEM_SIZE] = diffa[2]; col_ssd[3 * SHARED_MEM_SIZE] = diffa[3]; col_ssd[4 * SHARED_MEM_SIZE] = diffa[4]; col_ssd[5 * SHARED_MEM_SIZE] = diffa[5]; col_ssd[6 * SHARED_MEM_SIZE] = diffa[6]; col_ssd[7 * SHARED_MEM_SIZE] = diffa[7]; } extern "C" __global__ void stereoKernel(uchar *left, uchar *right, size_t img_step, uchar* disp, size_t disp_pitch, int maxdisp) { extern __shared__ unsigned int col_ssd_cache[]; unsigned int *col_ssd = col_ssd_cache + BLOCK_W + threadIdx.x; unsigned int *col_ssd_extra = threadIdx.x < N_DIRTY_PIXELS ? col_ssd + BLOCK_W : 0; //#define X (blockIdx.x * BLOCK_W + threadIdx.x + STEREO_MAXD) int X = (blockIdx.x * BLOCK_W + threadIdx.x + maxdisp); //#define Y (__mul24(blockIdx.y, ROWSperTHREAD) + RADIUS) #define Y (blockIdx.y * ROWSperTHREAD + RADIUS) //int Y = blockIdx.y * ROWSperTHREAD + RADIUS; unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step; uchar* disparImage = disp + X + Y * disp_pitch; /* if (X < cwidth) { unsigned int *minSSDImage_end = minSSDImage + min(ROWSperTHREAD, cheight - Y) * minssd_step; for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step ) *ptr = 0xFFFFFFFF; }*/ int end_row = min(ROWSperTHREAD, cheight - Y); int y_tex; int x_tex = X - RADIUS; for(int d = STEREO_MIND; d < maxdisp; d += STEREO_DISP_STEP) { y_tex = Y - RADIUS; InitColSSD(x_tex, y_tex, img_step, left, right, d, col_ssd); if (col_ssd_extra > 0) InitColSSD(x_tex + BLOCK_W, y_tex, img_step, left, right, d, col_ssd_extra); __syncthreads(); //before MinSSD function if (X < cwidth - RADIUS && Y < cheight - RADIUS) { uint2 minSSD = MinSSD(col_ssd_cache + threadIdx.x, col_ssd); if (minSSD.x < minSSDImage[0]) { disparImage[0] = (unsigned char)(d + minSSD.y); minSSDImage[0] = minSSD.x; } } for(int row = 1; row < end_row; row++) { int idx1 = y_tex * img_step + x_tex; int idx2 = (y_tex + WINSZ) * img_step + x_tex; __syncthreads(); StepDown(idx1, idx2, left, right, d, col_ssd); if (col_ssd_extra) StepDown(idx1, idx2, left + BLOCK_W, right + BLOCK_W, d, col_ssd_extra); y_tex += 1; __syncthreads(); //before MinSSD function if (X < cwidth - RADIUS && row < cheight - RADIUS - Y) { int idx = row * cminSSD_step; uint2 minSSD = MinSSD(col_ssd_cache + threadIdx.x, col_ssd); if (minSSD.x < minSSDImage[idx]) { disparImage[disp_pitch * row] = (unsigned char)(d + minSSD.y); minSSDImage[idx] = minSSD.x; } } } // for row loop } // for d loop } } extern "C" void cv::gpu::impl::stereoBM_GPU(const DevMem2D& left, const DevMem2D& right, DevMem2D& disp, int maxdisp, DevMem2D_& minSSD_buf) { //cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferL1) ); //cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferShared) ); size_t smem_size = (BLOCK_W + N_DISPARITIES * SHARED_MEM_SIZE) * sizeof(unsigned int); cudaSafeCall( cudaMemset2D(disp.ptr, disp.step, 0, disp.cols, disp. rows) ); cudaSafeCall( cudaMemset2D(minSSD_buf.ptr, minSSD_buf.step, 0xFF, minSSD_buf.cols * minSSD_buf.elemSize(), disp. rows) ); dim3 grid(1,1,1); dim3 threads(BLOCK_W, 1, 1); grid.x = divUp(left.cols - maxdisp - 2 * RADIUS, BLOCK_W); grid.y = divUp(left.rows - 2 * RADIUS, ROWSperTHREAD); cudaSafeCall( cudaMemcpyToSymbol( cwidth, &left.cols, sizeof (left.cols) ) ); cudaSafeCall( cudaMemcpyToSymbol( cheight, &left.rows, sizeof (left.rows) ) ); cudaSafeCall( cudaMemcpyToSymbol( cminSSDImage, &minSSD_buf.ptr, sizeof (minSSD_buf.ptr) ) ); size_t minssd_step = minSSD_buf.step/minSSD_buf.elemSize(); cudaSafeCall( cudaMemcpyToSymbol( cminSSD_step, &minssd_step, sizeof (minssd_step) ) ); device_code::stereoKernel<<>>(left.ptr, right.ptr, left.step, disp.ptr, disp.step, maxdisp); cudaSafeCall( cudaThreadSynchronize() ); }