/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/videostab/stabilizer.hpp" using namespace std; namespace cv { namespace videostab { Stabilizer::Stabilizer() { setFrameSource(new NullFrameSource()); setMotionEstimator(new PyrLkRobustMotionEstimator()); setMotionFilter(new GaussianMotionFilter(15, sqrt(15.0))); setDeblurer(new NullDeblurer()); setInpainter(new NullInpainter()); setEstimateTrimRatio(true); setTrimRatio(0); setInclusionConstraint(false); setBorderMode(BORDER_REPLICATE); setLog(new NullLog()); } void Stabilizer::reset() { radius_ = 0; curPos_ = -1; curStabilizedPos_ = -1; auxPassWasDone_ = false; frames_.clear(); motions_.clear(); stabilizedFrames_.clear(); stabilizationMotions_.clear(); doDeblurring_ = false; doInpainting_ = false; } Mat Stabilizer::nextFrame() { if (mustEstimateTrimRatio_ && !auxPassWasDone_) { estimateMotionsAndTrimRatio(); auxPassWasDone_ = true; frameSource_->reset(); } if (curStabilizedPos_ == curPos_ && curStabilizedPos_ != -1) return Mat(); // we've processed all frames already bool processed; do { processed = processNextFrame(); } while (processed && curStabilizedPos_ == -1); if (curStabilizedPos_ == -1) return Mat(); // frame source is empty const Mat &stabilizedFrame = at(curStabilizedPos_, stabilizedFrames_); int dx = floor(trimRatio_ * stabilizedFrame.cols); int dy = floor(trimRatio_ * stabilizedFrame.rows); return stabilizedFrame(Rect(dx, dy, stabilizedFrame.cols - 2*dx, stabilizedFrame.rows - 2*dy)); } void Stabilizer::estimateMotionsAndTrimRatio() { log_->print("estimating motions and trim ratio"); Size size; Mat prevFrame, frame; int frameCount = 0; while (!(frame = frameSource_->nextFrame()).empty()) { if (frameCount > 0) motions_.push_back(motionEstimator_->estimate(prevFrame, frame)); else size = frame.size(); prevFrame = frame; frameCount++; log_->print("."); } radius_ = motionFilter_->radius(); for (int i = 0; i < radius_; ++i) motions_.push_back(Mat::eye(3, 3, CV_32F)); log_->print("\n"); trimRatio_ = 0; for (int i = 0; i < frameCount; ++i) { Mat S = motionFilter_->apply(i, motions_); trimRatio_ = std::max(trimRatio_, estimateOptimalTrimRatio(S, size)); stabilizationMotions_.push_back(S); } log_->print("estimated trim ratio: %f\n", static_cast(trimRatio_)); } void Stabilizer::processFirstFrame(Mat &frame) { log_->print("processing frames"); frameSize_ = frame.size(); frameMask_.create(frameSize_, CV_8U); frameMask_.setTo(255); radius_ = motionFilter_->radius(); int cacheSize = 2*radius_ + 1; frames_.resize(cacheSize); stabilizedFrames_.resize(cacheSize); stabilizedMasks_.resize(cacheSize); if (!auxPassWasDone_) { motions_.resize(cacheSize); stabilizationMotions_.resize(cacheSize); } for (int i = -radius_; i < 0; ++i) { at(i, motions_) = Mat::eye(3, 3, CV_32F); at(i, frames_) = frame; } at(0, frames_) = frame; IInpainter *inpainter = static_cast(inpainter_); doInpainting_ = dynamic_cast(inpainter) == 0; if (doInpainting_) { inpainter_->setRadius(radius_); inpainter_->setFrames(frames_); inpainter_->setMotions(motions_); inpainter_->setStabilizedFrames(stabilizedFrames_); inpainter_->setStabilizationMotions(stabilizationMotions_); } IDeblurer *deblurer = static_cast(deblurer_); doDeblurring_ = dynamic_cast(deblurer) == 0; if (doDeblurring_) { blurrinessRates_.resize(cacheSize); float blurriness = calcBlurriness(frame); for (int i = -radius_; i <= 0; ++i) at(i, blurrinessRates_) = blurriness; deblurer_->setRadius(radius_); deblurer_->setFrames(frames_); deblurer_->setMotions(motions_); deblurer_->setBlurrinessRates(blurrinessRates_); } } bool Stabilizer::processNextFrame() { Mat frame = frameSource_->nextFrame(); if (!frame.empty()) { curPos_++; if (curPos_ > 0) { at(curPos_, frames_) = frame; if (doDeblurring_) at(curPos_, blurrinessRates_) = calcBlurriness(frame); if (!auxPassWasDone_) { Mat motionPrevToCur = motionEstimator_->estimate( at(curPos_ - 1, frames_), at(curPos_, frames_)); at(curPos_ - 1, motions_) = motionPrevToCur; } if (curPos_ >= radius_) { curStabilizedPos_ = curPos_ - radius_; stabilizeFrame(curStabilizedPos_); } } else processFirstFrame(frame); log_->print("."); return true; } if (curStabilizedPos_ < curPos_) { curStabilizedPos_++; at(curStabilizedPos_ + radius_, frames_) = at(curPos_, frames_); at(curStabilizedPos_ + radius_ - 1, motions_) = at(curPos_ - 1, motions_); stabilizeFrame(curStabilizedPos_); log_->print("."); return true; } return false; } void Stabilizer::stabilizeFrame(int idx) { Mat stabMotion; if (!auxPassWasDone_) stabMotion = motionFilter_->apply(idx, motions_); else stabMotion = at(idx, stabilizationMotions_); if (inclusionConstraint_ && !mustEstimateTrimRatio_) stabMotion = ensureInclusionConstraint(stabMotion, frameSize_, trimRatio_); at(idx, stabilizationMotions_) = stabMotion; if (doDeblurring_) { at(idx, frames_).copyTo(preProcessedFrame_); deblurer_->deblur(idx, preProcessedFrame_); } else preProcessedFrame_ = at(idx, frames_); // apply stabilization transformation warpAffine( preProcessedFrame_, at(idx, stabilizedFrames_), stabMotion(Rect(0,0,3,2)), frameSize_, INTER_LINEAR, borderMode_); if (doInpainting_) { warpAffine( frameMask_, at(idx, stabilizedMasks_), stabMotion(Rect(0,0,3,2)), frameSize_, INTER_NEAREST); erode(at(idx, stabilizedMasks_), at(idx, stabilizedMasks_), Mat()); at(idx, stabilizedMasks_).copyTo(inpaintingMask_); inpainter_->inpaint(idx, at(idx, stabilizedFrames_), inpaintingMask_); } } } // namespace videostab } // namespace cv