/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; using namespace testing; //#define DUMP #define OPTICAL_FLOW_DUMP_FILE "opticalflow/opticalflow_gold.bin" #define OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/opticalflow_gold_cc20.bin" #define INTERPOLATE_FRAMES_DUMP_FILE "opticalflow/interpolate_frames_gold.bin" #define INTERPOLATE_FRAMES_DUMP_FILE_CC20 "opticalflow/interpolate_frames_gold_cc20.bin" ///////////////////////////////////////////////////////////////////////////////////////////////// // BroxOpticalFlow struct BroxOpticalFlow : TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat frame0; cv::Mat frame1; cv::Mat u_gold; cv::Mat v_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); frame0.convertTo(frame0, CV_32F, 1.0 / 255.0); frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); frame1.convertTo(frame1, CV_32F, 1.0 / 255.0); #ifndef DUMP std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += OPTICAL_FLOW_DUMP_FILE_CC20; else fname += OPTICAL_FLOW_DUMP_FILE; std::ifstream f(fname.c_str(), std::ios_base::binary); int rows, cols; f.read((char*)&rows, sizeof(rows)); f.read((char*)&cols, sizeof(cols)); u_gold.create(rows, cols, CV_32FC1); for (int i = 0; i < u_gold.rows; ++i) f.read((char*)u_gold.ptr(i), u_gold.cols * sizeof(float)); v_gold.create(rows, cols, CV_32FC1); for (int i = 0; i < v_gold.rows; ++i) f.read((char*)v_gold.ptr(i), v_gold.cols * sizeof(float)); #endif } }; TEST_P(BroxOpticalFlow, Regression) { cv::Mat u; cv::Mat v; cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); cv::gpu::GpuMat d_u; cv::gpu::GpuMat d_v; d_flow(cv::gpu::GpuMat(frame0), cv::gpu::GpuMat(frame1), d_u, d_v); d_u.download(u); d_v.download(v); #ifndef DUMP EXPECT_MAT_NEAR(u_gold, u, 0); EXPECT_MAT_NEAR(v_gold, v, 0); #else std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += OPTICAL_FLOW_DUMP_FILE_CC20; else fname += OPTICAL_FLOW_DUMP_FILE; std::ofstream f(fname.c_str(), std::ios_base::binary); f.write((char*)&u.rows, sizeof(u.rows)); f.write((char*)&u.cols, sizeof(u.cols)); for (int i = 0; i < u.rows; ++i) f.write((char*)u.ptr(i), u.cols * sizeof(float)); for (int i = 0; i < v.rows; ++i) f.write((char*)v.ptr(i), v.cols * sizeof(float)); #endif } INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES); ///////////////////////////////////////////////////////////////////////////////////////////////// // InterpolateFrames struct InterpolateFrames : TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat frame0; cv::Mat frame1; cv::Mat newFrame_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); frame0.convertTo(frame0, CV_32F, 1.0 / 255.0); frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); frame1.convertTo(frame1, CV_32F, 1.0 / 255.0); #ifndef DUMP std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20; else fname += INTERPOLATE_FRAMES_DUMP_FILE; std::ifstream f(fname.c_str(), std::ios_base::binary); int rows, cols; f.read((char*)&rows, sizeof(rows)); f.read((char*)&cols, sizeof(cols)); newFrame_gold.create(rows, cols, CV_32FC1); for (int i = 0; i < newFrame_gold.rows; ++i) f.read((char*)newFrame_gold.ptr(i), newFrame_gold.cols * sizeof(float)); #endif } }; TEST_P(InterpolateFrames, Regression) { cv::Mat newFrame; cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); cv::gpu::GpuMat d_frame0(frame0); cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat d_fu; cv::gpu::GpuMat d_fv; cv::gpu::GpuMat d_bu; cv::gpu::GpuMat d_bv; d_flow(d_frame0, d_frame1, d_fu, d_fv); d_flow(d_frame1, d_frame0, d_bu, d_bv); cv::gpu::GpuMat d_newFrame; cv::gpu::GpuMat d_buf; cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, d_newFrame, d_buf); d_newFrame.download(newFrame); #ifndef DUMP EXPECT_MAT_NEAR(newFrame_gold, newFrame, 1e-3); #else std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20; else fname += INTERPOLATE_FRAMES_DUMP_FILE; std::ofstream f(fname.c_str(), std::ios_base::binary); f.write((char*)&newFrame.rows, sizeof(newFrame.rows)); f.write((char*)&newFrame.cols, sizeof(newFrame.cols)); for (int i = 0; i < newFrame.rows; ++i) f.write((char*)newFrame.ptr(i), newFrame.cols * sizeof(float)); #endif } INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES); ///////////////////////////////////////////////////////////////////////////////////////////////// // GoodFeaturesToTrack PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double) { cv::gpu::DeviceInfo devInfo; cv::Mat image; int maxCorners; double qualityLevel; double minDistance; std::vector pts_gold; virtual void SetUp() { devInfo = GET_PARAM(0); minDistance = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); maxCorners = 1000; qualityLevel= 0.01; cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); } }; TEST_P(GoodFeaturesToTrack, Accuracy) { cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); cv::gpu::GpuMat d_pts; detector(loadMat(image), d_pts); std::vector pts(d_pts.cols); cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]); d_pts.download(pts_mat); ASSERT_EQ(pts_gold.size(), pts.size()); size_t mistmatch = 0; for (size_t i = 0; i < pts.size(); ++i) { cv::Point2i a = pts_gold[i]; cv::Point2i b = pts[i]; bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; if (!eq) ++mistmatch; } double bad_ratio = static_cast(mistmatch) / pts.size(); ASSERT_LE(bad_ratio, 0.01); } INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, Combine(ALL_DEVICES, Values(0.0, 3.0))); ///////////////////////////////////////////////////////////////////////////////////////////////// // PyrLKOpticalFlow PARAM_TEST_CASE(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool) { cv::gpu::DeviceInfo devInfo; cv::Mat frame0; cv::Mat frame1; std::vector pts; std::vector nextPts_gold; std::vector status_gold; std::vector err_gold; virtual void SetUp() { devInfo = GET_PARAM(0); bool useGray = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame0.empty()); frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame1.empty()); cv::Mat gray_frame; if (useGray) gray_frame = frame0; else cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold, cv::Size(21, 21), 3, cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5); } }; TEST_P(PyrLKOpticalFlowSparse, Accuracy) { cv::gpu::PyrLKOpticalFlow d_pyrLK; cv::gpu::GpuMat d_pts; cv::Mat pts_mat(1, pts.size(), CV_32FC2, (void*)&pts[0]); d_pts.upload(pts_mat); cv::gpu::GpuMat d_nextPts; cv::gpu::GpuMat d_status; cv::gpu::GpuMat d_err; d_pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err); std::vector nextPts(d_nextPts.cols); cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]); d_nextPts.download(nextPts_mat); std::vector status(d_status.cols); cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]); d_status.download(status_mat); std::vector err(d_err.cols); cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]); d_err.download(err_mat); ASSERT_EQ(nextPts_gold.size(), nextPts.size()); ASSERT_EQ(status_gold.size(), status.size()); ASSERT_EQ(err_gold.size(), err.size()); size_t mistmatch = 0; for (size_t i = 0; i < nextPts.size(); ++i) { if (status[i] != status_gold[i]) { ++mistmatch; continue; } if (status[i]) { cv::Point2i a = nextPts[i]; cv::Point2i b = nextPts_gold[i]; bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; float errdiff = std::abs(err[i] - err_gold[i]); if (!eq || errdiff > 1e-1) ++mistmatch; } } double bad_ratio = static_cast(mistmatch) / nextPts.size(); ASSERT_LE(bad_ratio, 0.01); } INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, Combine(ALL_DEVICES, Bool())); PARAM_TEST_CASE(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo, double, int, int, bool) { cv::Mat frame0, frame1; double pyrScale; int polyN; double polySigma; int flags; bool useInitFlow; virtual void SetUp() { frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); ASSERT_FALSE(frame1.empty()); cv::gpu::setDevice(GET_PARAM(0).deviceID()); pyrScale = GET_PARAM(1); polyN = GET_PARAM(2); polySigma = polyN <= 5 ? 1.1 : 1.5; flags = GET_PARAM(3); useInitFlow = GET_PARAM(4); } }; TEST_P(FarnebackOpticalFlowTest, Accuracy) { using namespace cv; gpu::FarnebackOpticalFlow calc; calc.pyrScale = pyrScale; calc.polyN = polyN; calc.polySigma = polySigma; calc.flags = flags; gpu::GpuMat d_flowx, d_flowy; calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy); Mat flow; if (useInitFlow) { Mat flowxy[] = {(Mat)d_flowx, (Mat)d_flowy}; merge(flowxy, 2, flow); } if (useInitFlow) { calc.flags |= OPTFLOW_USE_INITIAL_FLOW; calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy); } calcOpticalFlowFarneback( frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize, calc.numIters, calc.polyN, calc.polySigma, calc.flags); std::vector flowxy; split(flow, flowxy); /*std::cout << checkSimilarity(flowxy[0], (Mat)d_flowx) << " " << checkSimilarity(flowxy[1], (Mat)d_flowy) << std::endl;*/ EXPECT_LT(checkSimilarity(flowxy[0], (Mat)d_flowx), 0.1); EXPECT_LT(checkSimilarity(flowxy[1], (Mat)d_flowy), 0.1); } INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, Combine(ALL_DEVICES, Values(0.3, 0.5, 0.8), Values(5, 7), Values(0, (int)cv::OPTFLOW_FARNEBACK_GAUSSIAN), Values(false, true))); #endif // HAVE_CUDA