/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::detail; namespace { struct IncDistance { IncDistance(std::vector &vdists) : dists(&vdists[0]) {} void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; } int* dists; }; struct CalcRotation { CalcRotation(int _num_images, const std::vector &_pairwise_matches, std::vector &_cameras) : num_images(_num_images), pairwise_matches(&_pairwise_matches[0]), cameras(&_cameras[0]) {} void operator ()(const GraphEdge &edge) { int pair_idx = edge.from * num_images + edge.to; Mat_ K_from = Mat::eye(3, 3, CV_64F); K_from(0,0) = cameras[edge.from].focal; K_from(1,1) = cameras[edge.from].focal * cameras[edge.from].aspect; K_from(0,2) = cameras[edge.from].ppx; K_from(0,2) = cameras[edge.from].ppy; Mat_ K_to = Mat::eye(3, 3, CV_64F); K_to(0,0) = cameras[edge.to].focal; K_to(1,1) = cameras[edge.to].focal * cameras[edge.to].aspect; K_to(0,2) = cameras[edge.to].ppx; K_to(0,2) = cameras[edge.to].ppy; Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to; cameras[edge.to].R = cameras[edge.from].R * R; } int num_images; const MatchesInfo* pairwise_matches; CameraParams* cameras; }; ////////////////////////////////////////////////////////////////////////////// void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res) { for (int i = 0; i < err1.rows; ++i) res.at(i, 0) = (err2.at(i, 0) - err1.at(i, 0)) / h; } } // namespace namespace cv { namespace detail { void HomographyBasedEstimator::estimate(const std::vector &features, const std::vector &pairwise_matches, std::vector &cameras) { LOGLN("Estimating rotations..."); #if ENABLE_LOG int64 t = getTickCount(); #endif const int num_images = static_cast(features.size()); #if 0 // Robustly estimate focal length from rotating cameras std::vector Hs; for (int iter = 0; iter < 100; ++iter) { int len = 2 + rand()%(pairwise_matches.size() - 1); std::vector subset; selectRandomSubset(len, pairwise_matches.size(), subset); Hs.clear(); for (size_t i = 0; i < subset.size(); ++i) if (!pairwise_matches[subset[i]].H.empty()) Hs.push_back(pairwise_matches[subset[i]].H); Mat_ K; if (Hs.size() >= 2) { if (calibrateRotatingCamera(Hs, K)) cin.get(); } } #endif if (!is_focals_estimated_) { // Estimate focal length and set it for all cameras std::vector focals; estimateFocal(features, pairwise_matches, focals); cameras.assign(num_images, CameraParams()); for (int i = 0; i < num_images; ++i) cameras[i].focal = focals[i]; } else { for (int i = 0; i < num_images; ++i) { cameras[i].ppx -= 0.5 * features[i].img_size.width; cameras[i].ppy -= 0.5 * features[i].img_size.height; } } // Restore global motion Graph span_tree; std::vector span_tree_centers; findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers); span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras)); // As calculations were performed under assumption that p.p. is in image center for (int i = 0; i < num_images; ++i) { cameras[i].ppx += 0.5 * features[i].img_size.width; cameras[i].ppy += 0.5 * features[i].img_size.height; } LOGLN("Estimating rotations, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); } ////////////////////////////////////////////////////////////////////////////// void BundleAdjusterBase::estimate(const std::vector &features, const std::vector &pairwise_matches, std::vector &cameras) { LOG_CHAT("Bundle adjustment"); #if ENABLE_LOG int64 t = getTickCount(); #endif num_images_ = static_cast(features.size()); features_ = &features[0]; pairwise_matches_ = &pairwise_matches[0]; setUpInitialCameraParams(cameras); // Leave only consistent image pairs edges_.clear(); for (int i = 0; i < num_images_ - 1; ++i) { for (int j = i + 1; j < num_images_; ++j) { const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; if (matches_info.confidence > conf_thresh_) edges_.push_back(std::make_pair(i, j)); } } // Compute number of correspondences total_num_matches_ = 0; for (size_t i = 0; i < edges_.size(); ++i) total_num_matches_ += static_cast(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers); CvLevMarq solver(num_images_ * num_params_per_cam_, total_num_matches_ * num_errs_per_measurement_, term_criteria_); Mat err, jac; CvMat matParams = cam_params_; cvCopy(&matParams, solver.param); int iter = 0; for(;;) { const CvMat* _param = 0; CvMat* _jac = 0; CvMat* _err = 0; bool proceed = solver.update(_param, _jac, _err); cvCopy(_param, &matParams); if (!proceed || !_err) break; if (_jac) { calcJacobian(jac); CvMat tmp = jac; cvCopy(&tmp, _jac); } if (_err) { calcError(err); LOG_CHAT("."); iter++; CvMat tmp = err; cvCopy(&tmp, _err); } } LOGLN_CHAT(""); LOGLN_CHAT("Bundle adjustment, final RMS error: " << std::sqrt(err.dot(err) / total_num_matches_)); LOGLN_CHAT("Bundle adjustment, iterations done: " << iter); obtainRefinedCameraParams(cameras); // Normalize motion to center image Graph span_tree; std::vector span_tree_centers; findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers); Mat R_inv = cameras[span_tree_centers[0]].R.inv(); for (int i = 0; i < num_images_; ++i) cameras[i].R = R_inv * cameras[i].R; LOGLN_CHAT("Bundle adjustment, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); } ////////////////////////////////////////////////////////////////////////////// void BundleAdjusterReproj::setUpInitialCameraParams(const std::vector &cameras) { cam_params_.create(num_images_ * 7, 1, CV_64F); SVD svd; for (int i = 0; i < num_images_; ++i) { cam_params_.at(i * 7, 0) = cameras[i].focal; cam_params_.at(i * 7 + 1, 0) = cameras[i].ppx; cam_params_.at(i * 7 + 2, 0) = cameras[i].ppy; cam_params_.at(i * 7 + 3, 0) = cameras[i].aspect; svd(cameras[i].R, SVD::FULL_UV); Mat R = svd.u * svd.vt; if (determinant(R) < 0) R *= -1; Mat rvec; Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F); cam_params_.at(i * 7 + 4, 0) = rvec.at(0, 0); cam_params_.at(i * 7 + 5, 0) = rvec.at(1, 0); cam_params_.at(i * 7 + 6, 0) = rvec.at(2, 0); } } void BundleAdjusterReproj::obtainRefinedCameraParams(std::vector &cameras) const { for (int i = 0; i < num_images_; ++i) { cameras[i].focal = cam_params_.at(i * 7, 0); cameras[i].ppx = cam_params_.at(i * 7 + 1, 0); cameras[i].ppy = cam_params_.at(i * 7 + 2, 0); cameras[i].aspect = cam_params_.at(i * 7 + 3, 0); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cam_params_.at(i * 7 + 4, 0); rvec.at(1, 0) = cam_params_.at(i * 7 + 5, 0); rvec.at(2, 0) = cam_params_.at(i * 7 + 6, 0); Rodrigues(rvec, cameras[i].R); Mat tmp; cameras[i].R.convertTo(tmp, CV_32F); cameras[i].R = tmp; } } void BundleAdjusterReproj::calcError(Mat &err) { err.create(total_num_matches_ * 2, 1, CV_64F); int match_idx = 0; for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx) { int i = edges_[edge_idx].first; int j = edges_[edge_idx].second; double f1 = cam_params_.at(i * 7, 0); double f2 = cam_params_.at(j * 7, 0); double ppx1 = cam_params_.at(i * 7 + 1, 0); double ppx2 = cam_params_.at(j * 7 + 1, 0); double ppy1 = cam_params_.at(i * 7 + 2, 0); double ppy2 = cam_params_.at(j * 7 + 2, 0); double a1 = cam_params_.at(i * 7 + 3, 0); double a2 = cam_params_.at(j * 7 + 3, 0); double R1[9]; Mat R1_(3, 3, CV_64F, R1); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cam_params_.at(i * 7 + 4, 0); rvec.at(1, 0) = cam_params_.at(i * 7 + 5, 0); rvec.at(2, 0) = cam_params_.at(i * 7 + 6, 0); Rodrigues(rvec, R1_); double R2[9]; Mat R2_(3, 3, CV_64F, R2); rvec.at(0, 0) = cam_params_.at(j * 7 + 4, 0); rvec.at(1, 0) = cam_params_.at(j * 7 + 5, 0); rvec.at(2, 0) = cam_params_.at(j * 7 + 6, 0); Rodrigues(rvec, R2_); const ImageFeatures& features1 = features_[i]; const ImageFeatures& features2 = features_[j]; const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; Mat_ K1 = Mat::eye(3, 3, CV_64F); K1(0,0) = f1; K1(0,2) = ppx1; K1(1,1) = f1*a1; K1(1,2) = ppy1; Mat_ K2 = Mat::eye(3, 3, CV_64F); K2(0,0) = f2; K2(0,2) = ppx2; K2(1,1) = f2*a2; K2(1,2) = ppy2; Mat_ H = K2 * R2_.inv() * R1_ * K1.inv(); for (size_t k = 0; k < matches_info.matches.size(); ++k) { if (!matches_info.inliers_mask[k]) continue; const DMatch& m = matches_info.matches[k]; Point2f p1 = features1.keypoints[m.queryIdx].pt; Point2f p2 = features2.keypoints[m.trainIdx].pt; double x = H(0,0)*p1.x + H(0,1)*p1.y + H(0,2); double y = H(1,0)*p1.x + H(1,1)*p1.y + H(1,2); double z = H(2,0)*p1.x + H(2,1)*p1.y + H(2,2); err.at(2 * match_idx, 0) = p2.x - x/z; err.at(2 * match_idx + 1, 0) = p2.y - y/z; match_idx++; } } } void BundleAdjusterReproj::calcJacobian(Mat &jac) { jac.create(total_num_matches_ * 2, num_images_ * 7, CV_64F); jac.setTo(0); double val; const double step = 1e-4; for (int i = 0; i < num_images_; ++i) { if (refinement_mask_.at(0, 0)) { val = cam_params_.at(i * 7, 0); cam_params_.at(i * 7, 0) = val - step; calcError(err1_); cam_params_.at(i * 7, 0) = val + step; calcError(err2_); calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7)); cam_params_.at(i * 7, 0) = val; } if (refinement_mask_.at(0, 2)) { val = cam_params_.at(i * 7 + 1, 0); cam_params_.at(i * 7 + 1, 0) = val - step; calcError(err1_); cam_params_.at(i * 7 + 1, 0) = val + step; calcError(err2_); calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 1)); cam_params_.at(i * 7 + 1, 0) = val; } if (refinement_mask_.at(1, 2)) { val = cam_params_.at(i * 7 + 2, 0); cam_params_.at(i * 7 + 2, 0) = val - step; calcError(err1_); cam_params_.at(i * 7 + 2, 0) = val + step; calcError(err2_); calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 2)); cam_params_.at(i * 7 + 2, 0) = val; } if (refinement_mask_.at(1, 1)) { val = cam_params_.at(i * 7 + 3, 0); cam_params_.at(i * 7 + 3, 0) = val - step; calcError(err1_); cam_params_.at(i * 7 + 3, 0) = val + step; calcError(err2_); calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 3)); cam_params_.at(i * 7 + 3, 0) = val; } for (int j = 4; j < 7; ++j) { val = cam_params_.at(i * 7 + j, 0); cam_params_.at(i * 7 + j, 0) = val - step; calcError(err1_); cam_params_.at(i * 7 + j, 0) = val + step; calcError(err2_); calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + j)); cam_params_.at(i * 7 + j, 0) = val; } } } ////////////////////////////////////////////////////////////////////////////// void BundleAdjusterRay::setUpInitialCameraParams(const std::vector &cameras) { cam_params_.create(num_images_ * 4, 1, CV_64F); SVD svd; for (int i = 0; i < num_images_; ++i) { cam_params_.at(i * 4, 0) = cameras[i].focal; svd(cameras[i].R, SVD::FULL_UV); Mat R = svd.u * svd.vt; if (determinant(R) < 0) R *= -1; Mat rvec; Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F); cam_params_.at(i * 4 + 1, 0) = rvec.at(0, 0); cam_params_.at(i * 4 + 2, 0) = rvec.at(1, 0); cam_params_.at(i * 4 + 3, 0) = rvec.at(2, 0); } } void BundleAdjusterRay::obtainRefinedCameraParams(std::vector &cameras) const { for (int i = 0; i < num_images_; ++i) { cameras[i].focal = cam_params_.at(i * 4, 0); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cam_params_.at(i * 4 + 1, 0); rvec.at(1, 0) = cam_params_.at(i * 4 + 2, 0); rvec.at(2, 0) = cam_params_.at(i * 4 + 3, 0); Rodrigues(rvec, cameras[i].R); Mat tmp; cameras[i].R.convertTo(tmp, CV_32F); cameras[i].R = tmp; } } void BundleAdjusterRay::calcError(Mat &err) { err.create(total_num_matches_ * 3, 1, CV_64F); int match_idx = 0; for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx) { int i = edges_[edge_idx].first; int j = edges_[edge_idx].second; double f1 = cam_params_.at(i * 4, 0); double f2 = cam_params_.at(j * 4, 0); double R1[9]; Mat R1_(3, 3, CV_64F, R1); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cam_params_.at(i * 4 + 1, 0); rvec.at(1, 0) = cam_params_.at(i * 4 + 2, 0); rvec.at(2, 0) = cam_params_.at(i * 4 + 3, 0); Rodrigues(rvec, R1_); double R2[9]; Mat R2_(3, 3, CV_64F, R2); rvec.at(0, 0) = cam_params_.at(j * 4 + 1, 0); rvec.at(1, 0) = cam_params_.at(j * 4 + 2, 0); rvec.at(2, 0) = cam_params_.at(j * 4 + 3, 0); Rodrigues(rvec, R2_); const ImageFeatures& features1 = features_[i]; const ImageFeatures& features2 = features_[j]; const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; Mat_ K1 = Mat::eye(3, 3, CV_64F); K1(0,0) = f1; K1(0,2) = features1.img_size.width * 0.5; K1(1,1) = f1; K1(1,2) = features1.img_size.height * 0.5; Mat_ K2 = Mat::eye(3, 3, CV_64F); K2(0,0) = f2; K2(0,2) = features2.img_size.width * 0.5; K2(1,1) = f2; K2(1,2) = features2.img_size.height * 0.5; Mat_ H1 = R1_ * K1.inv(); Mat_ H2 = R2_ * K2.inv(); for (size_t k = 0; k < matches_info.matches.size(); ++k) { if (!matches_info.inliers_mask[k]) continue; const DMatch& m = matches_info.matches[k]; Point2f p1 = features1.keypoints[m.queryIdx].pt; double x1 = H1(0,0)*p1.x + H1(0,1)*p1.y + H1(0,2); double y1 = H1(1,0)*p1.x + H1(1,1)*p1.y + H1(1,2); double z1 = H1(2,0)*p1.x + H1(2,1)*p1.y + H1(2,2); double len = std::sqrt(x1*x1 + y1*y1 + z1*z1); x1 /= len; y1 /= len; z1 /= len; Point2f p2 = features2.keypoints[m.trainIdx].pt; double x2 = H2(0,0)*p2.x + H2(0,1)*p2.y + H2(0,2); double y2 = H2(1,0)*p2.x + H2(1,1)*p2.y + H2(1,2); double z2 = H2(2,0)*p2.x + H2(2,1)*p2.y + H2(2,2); len = std::sqrt(x2*x2 + y2*y2 + z2*z2); x2 /= len; y2 /= len; z2 /= len; double mult = std::sqrt(f1 * f2); err.at(3 * match_idx, 0) = mult * (x1 - x2); err.at(3 * match_idx + 1, 0) = mult * (y1 - y2); err.at(3 * match_idx + 2, 0) = mult * (z1 - z2); match_idx++; } } } void BundleAdjusterRay::calcJacobian(Mat &jac) { jac.create(total_num_matches_ * 3, num_images_ * 4, CV_64F); double val; const double step = 1e-3; for (int i = 0; i < num_images_; ++i) { for (int j = 0; j < 4; ++j) { val = cam_params_.at(i * 4 + j, 0); cam_params_.at(i * 4 + j, 0) = val - step; calcError(err1_); cam_params_.at(i * 4 + j, 0) = val + step; calcError(err2_); calcDeriv(err1_, err2_, 2 * step, jac.col(i * 4 + j)); cam_params_.at(i * 4 + j, 0) = val; } } } ////////////////////////////////////////////////////////////////////////////// void waveCorrect(std::vector &rmats, WaveCorrectKind kind) { LOGLN("Wave correcting..."); #if ENABLE_LOG int64 t = getTickCount(); #endif Mat moment = Mat::zeros(3, 3, CV_32F); for (size_t i = 0; i < rmats.size(); ++i) { Mat col = rmats[i].col(0); moment += col * col.t(); } Mat eigen_vals, eigen_vecs; eigen(moment, eigen_vals, eigen_vecs); Mat rg1; if (kind == WAVE_CORRECT_HORIZ) rg1 = eigen_vecs.row(2).t(); else if (kind == WAVE_CORRECT_VERT) rg1 = eigen_vecs.row(0).t(); else CV_Error(CV_StsBadArg, "unsupported kind of wave correction"); Mat img_k = Mat::zeros(3, 1, CV_32F); for (size_t i = 0; i < rmats.size(); ++i) img_k += rmats[i].col(2); Mat rg0 = rg1.cross(img_k); rg0 /= norm(rg0); Mat rg2 = rg0.cross(rg1); double conf = 0; if (kind == WAVE_CORRECT_HORIZ) { for (size_t i = 0; i < rmats.size(); ++i) conf += rg0.dot(rmats[i].col(0)); if (conf < 0) { rg0 *= -1; rg1 *= -1; } } else if (kind == WAVE_CORRECT_VERT) { for (size_t i = 0; i < rmats.size(); ++i) conf -= rg1.dot(rmats[i].col(0)); if (conf < 0) { rg0 *= -1; rg1 *= -1; } } Mat R = Mat::zeros(3, 3, CV_32F); Mat tmp = R.row(0); Mat(rg0.t()).copyTo(tmp); tmp = R.row(1); Mat(rg1.t()).copyTo(tmp); tmp = R.row(2); Mat(rg2.t()).copyTo(tmp); for (size_t i = 0; i < rmats.size(); ++i) rmats[i] = R * rmats[i]; LOGLN("Wave correcting, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); } ////////////////////////////////////////////////////////////////////////////// cv::String matchesGraphAsString(std::vector &pathes, std::vector &pairwise_matches, float conf_threshold) { std::stringstream str; str << "graph matches_graph{\n"; const int num_images = static_cast(pathes.size()); std::set > span_tree_edges; DisjointSets comps(num_images); for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { if (pairwise_matches[i*num_images + j].confidence < conf_threshold) continue; int comp1 = comps.findSetByElem(i); int comp2 = comps.findSetByElem(j); if (comp1 != comp2) { comps.mergeSets(comp1, comp2); span_tree_edges.insert(std::make_pair(i, j)); } } } for (std::set >::const_iterator itr = span_tree_edges.begin(); itr != span_tree_edges.end(); ++itr) { std::pair edge = *itr; if (span_tree_edges.find(edge) != span_tree_edges.end()) { cv::String name_src = pathes[edge.first]; size_t prefix_len = name_src.find_last_of("/\\"); if (prefix_len != cv::String::npos) prefix_len++; else prefix_len = 0; name_src = name_src.substr(prefix_len, name_src.size() - prefix_len); cv::String name_dst = pathes[edge.second]; prefix_len = name_dst.find_last_of("/\\"); if (prefix_len != cv::String::npos) prefix_len++; else prefix_len = 0; name_dst = name_dst.substr(prefix_len, name_dst.size() - prefix_len); int pos = edge.first*num_images + edge.second; str << "\"" << name_src.c_str() << "\" -- \"" << name_dst.c_str() << "\"" << "[label=\"Nm=" << pairwise_matches[pos].matches.size() << ", Ni=" << pairwise_matches[pos].num_inliers << ", C=" << pairwise_matches[pos].confidence << "\"];\n"; } } for (size_t i = 0; i < comps.size.size(); ++i) { if (comps.size[comps.findSetByElem((int)i)] == 1) { cv::String name = pathes[i]; size_t prefix_len = name.find_last_of("/\\"); if (prefix_len != cv::String::npos) prefix_len++; else prefix_len = 0; name = name.substr(prefix_len, name.size() - prefix_len); str << "\"" << name.c_str() << "\";\n"; } } str << "}"; return str.str().c_str(); } std::vector leaveBiggestComponent(std::vector &features, std::vector &pairwise_matches, float conf_threshold) { const int num_images = static_cast(features.size()); DisjointSets comps(num_images); for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { if (pairwise_matches[i*num_images + j].confidence < conf_threshold) continue; int comp1 = comps.findSetByElem(i); int comp2 = comps.findSetByElem(j); if (comp1 != comp2) comps.mergeSets(comp1, comp2); } } int max_comp = static_cast(std::max_element(comps.size.begin(), comps.size.end()) - comps.size.begin()); std::vector indices; std::vector indices_removed; for (int i = 0; i < num_images; ++i) if (comps.findSetByElem(i) == max_comp) indices.push_back(i); else indices_removed.push_back(i); std::vector features_subset; std::vector pairwise_matches_subset; for (size_t i = 0; i < indices.size(); ++i) { features_subset.push_back(features[indices[i]]); for (size_t j = 0; j < indices.size(); ++j) { pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]); pairwise_matches_subset.back().src_img_idx = static_cast(i); pairwise_matches_subset.back().dst_img_idx = static_cast(j); } } if (static_cast(features_subset.size()) == num_images) return indices; LOG("Removed some images, because can't match them or there are too similar images: ("); LOG(indices_removed[0] + 1); for (size_t i = 1; i < indices_removed.size(); ++i) LOG(", " << indices_removed[i]+1); LOGLN(")."); LOGLN("Try to decrease the match confidence threshold and/or check if you're stitching duplicates."); features = features_subset; pairwise_matches = pairwise_matches_subset; return indices; } void findMaxSpanningTree(int num_images, const std::vector &pairwise_matches, Graph &span_tree, std::vector ¢ers) { Graph graph(num_images); std::vector edges; // Construct images graph and remember its edges for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { if (pairwise_matches[i * num_images + j].H.empty()) continue; float conf = static_cast(pairwise_matches[i * num_images + j].num_inliers); graph.addEdge(i, j, conf); edges.push_back(GraphEdge(i, j, conf)); } } DisjointSets comps(num_images); span_tree.create(num_images); std::vector span_tree_powers(num_images, 0); // Find maximum spanning tree sort(edges.begin(), edges.end(), std::greater()); for (size_t i = 0; i < edges.size(); ++i) { int comp1 = comps.findSetByElem(edges[i].from); int comp2 = comps.findSetByElem(edges[i].to); if (comp1 != comp2) { comps.mergeSets(comp1, comp2); span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight); span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight); span_tree_powers[edges[i].from]++; span_tree_powers[edges[i].to]++; } } // Find spanning tree leafs std::vector span_tree_leafs; for (int i = 0; i < num_images; ++i) if (span_tree_powers[i] == 1) span_tree_leafs.push_back(i); // Find maximum distance from each spanning tree vertex std::vector max_dists(num_images, 0); std::vector cur_dists; for (size_t i = 0; i < span_tree_leafs.size(); ++i) { cur_dists.assign(num_images, 0); span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists)); for (int j = 0; j < num_images; ++j) max_dists[j] = std::max(max_dists[j], cur_dists[j]); } // Find min-max distance int min_max_dist = max_dists[0]; for (int i = 1; i < num_images; ++i) if (min_max_dist > max_dists[i]) min_max_dist = max_dists[i]; // Find spanning tree centers centers.clear(); for (int i = 0; i < num_images; ++i) if (max_dists[i] == min_max_dist) centers.push_back(i); CV_Assert(centers.size() > 0 && centers.size() <= 2); } } // namespace detail } // namespace cv