/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include #include #include #include #include #include // use previous stored integrals for regression testing // #define USE_REFERENCE_VALUES #if defined USE_REFERENCE_VALUES namespace { char *itoa(long i, char* s, int /*dummy_radix*/) { sprintf(s, "%ld", i); return s; } #endif // used for noisy printfs // #define WITH_DEBUG_OUT #if defined WITH_DEBUG_OUT # define dprintf(format, ...) \ do { printf(format, __VA_ARGS__); } while (0) #else # define dprintf(format, ...) #endif namespace { struct Octave { int index; float scale; int stages; cv::Size size; int shrinkage; static const char *const SC_OCT_SCALE; static const char *const SC_OCT_STAGES; static const char *const SC_OCT_SHRINKAGE; Octave(const int i, cv::Size origObjSize, const cv::FileNode& fn) : index(i), scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]), size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)), shrinkage((int)fn[SC_OCT_SHRINKAGE]) {} }; const char *const Octave::SC_OCT_SCALE = "scale"; const char *const Octave::SC_OCT_STAGES = "stageNum"; const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor"; struct Stage { float threshold; static const char *const SC_STAGE_THRESHOLD; Stage(){} Stage(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]){} }; const char *const Stage::SC_STAGE_THRESHOLD = "stageThreshold"; struct Node { int feature; float threshold; Node(){} Node(const int offset, cv::FileNodeIterator& fIt) : feature((int)(*(fIt +=2)++) + offset), threshold((float)(*(fIt++))){} }; struct Feature { int channel; cv::Rect rect; float rarea; static const char * const SC_F_CHANNEL; static const char * const SC_F_RECT; Feature() {} Feature(const cv::FileNode& fn) : channel((int)fn[SC_F_CHANNEL]) { cv::FileNode rn = fn[SC_F_RECT]; cv::FileNodeIterator r_it = rn.end(); rect = cv::Rect(*(--r_it), *(--r_it), *(--r_it), *(--r_it)); // 1 / area rarea = 1.f / ((rect.width - rect.x) * (rect.height - rect.y)); } }; const char * const Feature::SC_F_CHANNEL = "channel"; const char * const Feature::SC_F_RECT = "rect"; struct Object { enum Class{PEDESTRIAN}; cv::Rect rect; float confidence; Class detType; Object(const cv::Rect& r, const float c, Class dt = PEDESTRIAN) : rect(r), confidence(c), detType(dt) {} }; struct CascadeIntrinsics { static const float lambda = 1.099f, a = 0.89f; static float getFor(int channel, float scaling) { CV_Assert(channel < 10); if (fabs(scaling - 1.f) < FLT_EPSILON) // if (scaling == 1.f) return 1.f; // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers static const float A[2][2] = { //channel <= 6, otherwise { 0.89f, 1.f}, // down { 1.00f, 1.f} // up }; static const float B[2][2] = { //channel <= 6, otherwise { 1.099f / log(2), 2.f}, // down { 0.f, 2.f} // up }; float a = A[(int)(scaling >= 1)][(int)(channel > 6)]; float b = B[(int)(scaling >= 1)][(int)(channel > 6)]; dprintf("scaling: %f %f %f %f\n", scaling, a, b, a * pow(scaling, b)); return a * pow(scaling, b); } }; struct Level { const Octave* octave; float origScale; float relScale; float shrScale; // used for marking detection int scaleshift; cv::Size workRect; cv::Size objSize; enum { R_SHIFT = 1 << 15 }; float scaling[2]; Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h) : octave(&oct), origScale(scale), relScale(scale / oct.scale), shrScale (relScale / (float)shrinkage), workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) { scaling[0] = CascadeIntrinsics::getFor(0, relScale) / (relScale * relScale); scaling[1] = CascadeIntrinsics::getFor(9, relScale) / (relScale * relScale); scaleshift = relScale * (1 << 16); } void markDetection(const int x, const int y, float confidence, std::vector& detections) const { int shrinkage = (*octave).shrinkage; cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height); detections.push_back(Object(rect, confidence)); } float rescale(cv::Rect& scaledRect, const float threshold, int idx) const { // rescale scaledRect.x = (scaleshift * scaledRect.x + R_SHIFT) >> 16; scaledRect.y = (scaleshift * scaledRect.y + R_SHIFT) >> 16; scaledRect.width = (scaleshift * scaledRect.width + R_SHIFT) >> 16; scaledRect.height = (scaleshift * scaledRect.height + R_SHIFT) >> 16; float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); // compensation areas rounding return (threshold * scaling[idx] * sarea); } }; template< typename T> struct Decimate { int shrinkage; Decimate(const int sr) : shrinkage(sr) {} void operator()(const cv::Mat& in, cv::Mat& out) const { int cols = in.cols / shrinkage; int rows = in.rows / shrinkage; out.create(rows, cols, in.type()); CV_Assert(cols * shrinkage == in.cols); CV_Assert(rows * shrinkage == in.rows); for (int outIdx_y = 0; outIdx_y < rows; ++outIdx_y) { T* outPtr = out.ptr(outIdx_y); for (int outIdx_x = 0; outIdx_x < cols; ++outIdx_x) { // do desimate int inIdx_y = outIdx_y * shrinkage; int inIdx_x = outIdx_x * shrinkage; int sum = 0; for (int y = inIdx_y; y < inIdx_y + shrinkage; ++y) for (int x = inIdx_x; x < inIdx_x + shrinkage; ++x) sum += in.at(y, x); sum /= shrinkage * shrinkage; outPtr[outIdx_x] = cv::saturate_cast(sum); } } } }; struct ChannelStorage { std::vector hog; int shrinkage; int offset; int step; enum {HOG_BINS = 6, HOG_LUV_BINS = 10}; ChannelStorage() {} ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr) { hog.clear(); Decimate decimate(shr); #if defined USE_REFERENCE_VALUES char buff[33]; cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ); for(int i = 0; i < HOG_LUV_BINS; ++i) { cv::Mat channel; imgs[std::string("channel") + itoa(i, buff, 10)] >> channel; hog.push_back(channel); } #else // add gauss cv::Mat gauss; cv::GaussianBlur(colored, gauss, cv::Size(3,3), 0 ,0); // convert to luv cv::Mat luv; cv::cvtColor(colored, luv, CV_BGR2Luv); // split to 3 one channel matrix std::vector splited, luvs; split(luv, splited); // shrink and integrate for (int i = 0; i < (int)splited.size(); i++) { cv::Mat shrunk, sum; decimate(splited[i], shrunk); cv::integral(shrunk, sum, cv::noArray(), CV_32S); luvs.push_back(sum); } // convert to grey cv::Mat grey; cv::cvtColor(colored, grey, CV_BGR2GRAY); // get derivative cv::Mat df_dx, df_dy, mag, angle; cv::Sobel(grey, df_dx, CV_32F, 1, 0); cv::Sobel(grey, df_dy, CV_32F, 0, 1); // normalize df_dx /= 4; df_dy /= 4; // calculate magnitude cv::cartToPolar(df_dx, df_dy, mag, angle, true); // normalize to avoid uchar overflow static const float magnitudeScaling = 1.f / sqrt(2); mag *= magnitudeScaling; // convert to uchar cv::Mat saturatedMag(grey.rows, grey.cols, CV_8UC1), shrMag; for (int y = 0; y < grey.rows; ++y) { float* rm = mag.ptr(y); uchar* mg = saturatedMag.ptr(y); for (int x = 0; x < grey.cols; ++x) { mg[x] = cv::saturate_cast(rm[x]); } } // srink and integrate decimate(saturatedMag, shrMag); cv::integral(shrMag, mag, cv::noArray(), CV_32S); // create hog channels angle /= 60.f; std::vector hist; for (int bin = 0; bin < HOG_BINS; ++bin) { hist.push_back(cv::Mat::zeros(saturatedMag.rows, saturatedMag.cols, CV_8UC1)); } for (int y = 0; y < saturatedMag.rows; ++y) { uchar* magnitude = saturatedMag.ptr(y); float* ang = angle.ptr(y); for (int x = 0; x < saturatedMag.cols; ++x) { hist[ (int)ang[x] ].ptr(y)[x] = magnitude[x]; } } for(int i = 0; i < HOG_BINS; ++i) { cv::Mat shrunk, sum; decimate(hist[i], shrunk); cv::integral(shrunk, sum, cv::noArray(), CV_32S); hog.push_back(sum); } hog.push_back(mag); hog.insert(hog.end(), luvs.begin(), luvs.end()); step = hog[0].cols; // CV_Assert(hog.size() == 10); #endif } float get(const int channel, const cv::Rect& area) const { // CV_Assert(channel < HOG_LUV_BINS); const cv::Mat& m = hog[channel]; int *ptr = ((int*)(m.data)) + offset; int a = ptr[area.y * step + area.x]; int b = ptr[area.y * step + area.width]; int c = ptr[area.height * step + area.width]; int d = ptr[area.height * step + area.x]; return (a - b + c - d); } }; } struct cv::SoftCascade::Filds { float minScale; float maxScale; int origObjWidth; int origObjHeight; int shrinkage; std::vector octaves; std::vector stages; std::vector nodes; std::vector leaves; std::vector features; std::vector levels; typedef std::vector::iterator octIt_t; void detectAt(const int dx, const int dy, const Level& level, const ChannelStorage& storage, std::vector& detections) const { dprintf("detect at: %d %d\n", dx, dy); float detectionScore = 0.f; const Octave& octave = *(level.octave); int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages; dprintf(" octave stages: %d to %d index %d %f level %f\n", stBegin, stEnd, octave.index, octave.scale, level.origScale); int st = stBegin; for(; st < stEnd; ++st) { dprintf("index: %d\n", st); const Stage& stage = stages[st]; { int nId = st * 3; // work with root node const Node& node = nodes[nId]; const Feature& feature = features[node.feature]; cv::Rect scaledRect(feature.rect); float threshold = level.rescale(scaledRect, node.threshold,(int)(feature.channel > 6)) * feature.rarea; float sum = storage.get(feature.channel, scaledRect); dprintf("root feature %d %f\n",feature.channel, sum); int next = (sum >= threshold)? 2 : 1; dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold); // leaves const Node& leaf = nodes[nId + next]; const Feature& fLeaf = features[leaf.feature]; scaledRect = fLeaf.rect; threshold = level.rescale(scaledRect, leaf.threshold, (int)(fLeaf.channel > 6)) * fLeaf.rarea; sum = storage.get(fLeaf.channel, scaledRect); int lShift = (next - 1) * 2 + ((sum >= threshold) ? 1 : 0); float impact = leaves[(st * 4) + lShift]; dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact); detectionScore += impact; } dprintf("extracted stage:\n"); dprintf("ct %f\n", stage.threshold); dprintf("computed score %f\n\n", detectionScore); #if defined WITH_DEBUG_OUT if (st - stBegin > 50 ) break; #endif if (detectionScore <= stage.threshold) return; } dprintf("x %d y %d: %d\n", dx, dy, st - stBegin); dprintf(" got %d\n", st); level.markDetection(dx, dy, detectionScore, detections); } octIt_t fitOctave(const float& logFactor) { float minAbsLog = FLT_MAX; octIt_t res = octaves.begin(); for (octIt_t oct = octaves.begin(); oct < octaves.end(); ++oct) { const Octave& octave =*oct; float logOctave = log(octave.scale); float logAbsScale = fabs(logFactor - logOctave); if(logAbsScale < minAbsLog) { res = oct; minAbsLog = logAbsScale; } } return res; } // compute levels of full pyramid void calcLevels(int frameW, int frameH, int scales) { CV_Assert(scales > 1); levels.clear(); float logFactor = (log(maxScale) - log(minScale)) / (scales -1); float scale = minScale; for (int sc = 0; sc < scales; ++sc) { int width = std::max(0.0f, frameW - (origObjWidth * scale)); int height = std::max(0.0f, frameH - (origObjHeight * scale)); float logScale = log(scale); octIt_t fit = fitOctave(logScale); Level level(*fit, scale, shrinkage, width, height); if (!width || !height) break; else levels.push_back(level); if (fabs(scale - maxScale) < FLT_EPSILON) break; scale = std::min(maxScale, expf(log(scale) + logFactor)); std::cout << "level " << sc << " scale " << levels[sc].origScale << " octeve " << levels[sc].octave->scale << " " << levels[sc].relScale << " " << levels[sc].shrScale << " [" << levels[sc].objSize.width << " " << levels[sc].objSize.height << "] [" << levels[sc].workRect.width << " " << levels[sc].workRect.height << "]" << std::endl; } } bool fill(const FileNode &root, const float mins, const float maxs) { minScale = mins; maxScale = maxs; // cascade properties static const char *const SC_STAGE_TYPE = "stageType"; static const char *const SC_BOOST = "BOOST"; static const char *const SC_FEATURE_TYPE = "featureType"; static const char *const SC_ICF = "ICF"; static const char *const SC_ORIG_W = "width"; static const char *const SC_ORIG_H = "height"; static const char *const SC_OCTAVES = "octaves"; static const char *const SC_STAGES = "stages"; static const char *const SC_FEATURES = "features"; static const char *const SC_WEEK = "weakClassifiers"; static const char *const SC_INTERNAL = "internalNodes"; static const char *const SC_LEAF = "leafValues"; // only Ada Boost supported std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; CV_Assert(stageTypeStr == SC_BOOST); // only HOG-like integral channel features cupported string featureTypeStr = (string)root[SC_FEATURE_TYPE]; CV_Assert(featureTypeStr == SC_ICF); origObjWidth = (int)root[SC_ORIG_W]; CV_Assert(origObjWidth == SoftCascade::ORIG_OBJECT_WIDTH); origObjHeight = (int)root[SC_ORIG_H]; CV_Assert(origObjHeight == SoftCascade::ORIG_OBJECT_HEIGHT); // for each octave (~ one cascade in classic OpenCV xml) FileNode fn = root[SC_OCTAVES]; if (fn.empty()) return false; // octaves.reserve(noctaves); FileNodeIterator it = fn.begin(), it_end = fn.end(); int feature_offset = 0; int octIndex = 0; for (; it != it_end; ++it) { FileNode fns = *it; Octave octave(octIndex, cv::Size(SoftCascade::ORIG_OBJECT_WIDTH, SoftCascade::ORIG_OBJECT_HEIGHT), fns); CV_Assert(octave.stages > 0); octaves.push_back(octave); FileNode ffs = fns[SC_FEATURES]; if (ffs.empty()) return false; fns = fns[SC_STAGES]; if (fn.empty()) return false; // for each stage (~ decision tree with H = 2) FileNodeIterator st = fns.begin(), st_end = fns.end(); for (; st != st_end; ++st ) { fns = *st; stages.push_back(Stage(fns)); fns = fns[SC_WEEK]; FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); for (; ftr != ft_end; ++ftr) { fns = (*ftr)[SC_INTERNAL]; FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); for (; inIt != inIt_end;) nodes.push_back(Node(feature_offset, inIt)); fns = (*ftr)[SC_LEAF]; inIt = fns.begin(), inIt_end = fns.end(); for (; inIt != inIt_end; ++inIt) leaves.push_back((float)(*inIt)); } } st = ffs.begin(), st_end = ffs.end(); for (; st != st_end; ++st ) features.push_back(Feature(*st)); feature_offset += octave.stages * 3; ++octIndex; } shrinkage = octaves[0].shrinkage; return true; } }; cv::SoftCascade::SoftCascade() : filds(0) {} cv::SoftCascade::SoftCascade( const string& filename, const float minScale, const float maxScale) : filds(0) { load(filename, minScale, maxScale); } cv::SoftCascade::~SoftCascade() { delete filds; } bool cv::SoftCascade::load( const string& filename, const float minScale, const float maxScale) { if (filds) delete filds; filds = 0; cv::FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) return false; filds = new Filds; Filds& flds = *filds; if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false; flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES); return true; } //#define DEBUG_SHOW_RESULT void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector& /*rois*/, std::vector& objects, const int /*rejectfactor*/) const { typedef std::vector::const_iterator RIter_t; // only color images are supperted CV_Assert(image.type() == CV_8UC3); // only this window size allowed CV_Assert(image.cols == 640 && image.rows == 480); objects.clear(); const Filds& fld = *filds; // create integrals ChannelStorage storage(image, fld.shrinkage); // object candidates std::vector detections; typedef std::vector::const_iterator lIt; int total = 0, l = 0; for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) { const Level& level = *it; #if defined WITH_DEBUG_OUT std::cout << "================================ " << l++ << std::endl; #else (void)l; #endif // int dx = 79; int dy = 76; for (int dy = 0; dy < level.workRect.height; ++dy) { for (int dx = 0; dx < level.workRect.width; ++dx) { storage.offset = dy * storage.step + dx; fld.detectAt(dx, dy, level, storage, detections); total++; } } #if defined DEBUG_SHOW_RESULT cv::Mat out = image.clone(); printf("TOTAL: %d from %d\n", (int)detections.size(),total) ; for(int i = 0; i < (int)detections.size(); ++i) { cv::rectangle(out, detections[i].rect, cv::Scalar(255, 0, 0, 255), 1); } cv::imshow("out", out); cv::waitKey(0); std::cout << "work rect: " << level.workRect.width << " " << level.workRect.height << std::endl; #endif detections.clear(); } // std::swap(detections, objects); }