/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { template<> void Ptr::delete_obj() { cvReleaseHist(&obj); } ////////////////// Helper functions ////////////////////// static const size_t OUT_OF_RANGE = (size_t)1 << (sizeof(size_t)*8 - 2); static void calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist, int dims, const float** ranges, const double* uniranges, bool uniform, bool issparse, vector& _tab ) { const int low = 0, high = 256; int i, j; _tab.resize((high-low)*dims); size_t* tab = &_tab[0]; if( uniform ) { for( i = 0; i < dims; i++ ) { double a = uniranges[i*2]; double b = uniranges[i*2+1]; int sz = !issparse ? hist.size[i] : shist.size(i); size_t step = !issparse ? hist.step[i] : 1; for( j = low; j < high; j++ ) { int idx = cvFloor(j*a + b); size_t written_idx; if( (unsigned)idx < (unsigned)sz ) written_idx = idx*step; else written_idx = OUT_OF_RANGE; tab[i*(high - low) + j - low] = written_idx; } } } else { for( i = 0; i < dims; i++ ) { int limit = std::min(cvCeil(ranges[i][0]), high); int idx = -1, sz = !issparse ? hist.size[i] : shist.size(i); size_t written_idx = OUT_OF_RANGE; size_t step = !issparse ? hist.step[i] : 1; for(j = low;;) { for( ; j < limit; j++ ) tab[i*(high - low) + j - low] = written_idx; if( (unsigned)(++idx) < (unsigned)sz ) { limit = std::min(cvCeil(ranges[i][idx+1]), high); written_idx = idx*step; } else { for( ; j < high; j++ ) tab[i*(high - low) + j - low] = OUT_OF_RANGE; break; } } } } } static void histPrepareImages( const Mat* images, int nimages, const int* channels, const Mat& mask, int dims, const int* histSize, const float** ranges, bool uniform, vector& ptrs, vector& deltas, Size& imsize, vector& uniranges ) { int i, j, c; CV_Assert( channels != 0 || nimages == dims ); imsize = images[0].size(); int depth = images[0].depth(), esz1 = (int)images[0].elemSize1(); bool isContinuous = true; ptrs.resize(dims + 1); deltas.resize((dims + 1)*2); for( i = 0; i < dims; i++ ) { if(!channels) { j = i; c = 0; CV_Assert( images[j].channels() == 1 ); } else { c = channels[i]; CV_Assert( c >= 0 ); for( j = 0; j < nimages; c -= images[j].channels(), j++ ) if( c < images[j].channels() ) break; CV_Assert( j < nimages ); } CV_Assert( images[j].size() == imsize && images[j].depth() == depth ); if( !images[j].isContinuous() ) isContinuous = false; ptrs[i] = images[j].data + c*esz1; deltas[i*2] = images[j].channels(); deltas[i*2+1] = (int)(images[j].step/esz1 - imsize.width*deltas[i*2]); } if( mask.data ) { CV_Assert( mask.size() == imsize && mask.channels() == 1 ); isContinuous = isContinuous && mask.isContinuous(); ptrs[dims] = mask.data; deltas[dims*2] = 1; deltas[dims*2 + 1] = (int)(mask.step/mask.elemSize1()); } if( isContinuous ) { imsize.width *= imsize.height; imsize.height = 1; } if( !ranges ) { CV_Assert( depth == CV_8U ); uniranges.resize( dims*2 ); for( i = 0; i < dims; i++ ) { uniranges[i*2] = histSize[i]/256.; uniranges[i*2+1] = 0; } } else if( uniform ) { uniranges.resize( dims*2 ); for( i = 0; i < dims; i++ ) { CV_Assert( ranges[i] && ranges[i][0] < ranges[i][1] ); double low = ranges[i][0], high = ranges[i][1]; double t = histSize[i]/(high - low); uniranges[i*2] = t; uniranges[i*2+1] = -t*low; } } else { for( i = 0; i < dims; i++ ) { size_t j, n = histSize[i]; for( j = 0; j < n; j++ ) CV_Assert( ranges[i][j] < ranges[i][j+1] ); } } } ////////////////////////////////// C A L C U L A T E H I S T O G R A M //////////////////////////////////// template static void calcHist_( vector& _ptrs, const vector& _deltas, Size imsize, Mat& hist, int dims, const float** _ranges, const double* _uniranges, bool uniform ) { T** ptrs = (T**)&_ptrs[0]; const int* deltas = &_deltas[0]; uchar* H = hist.data; int i, x; const uchar* mask = _ptrs[dims]; int mstep = _deltas[dims*2 + 1]; int size[CV_MAX_DIM]; size_t hstep[CV_MAX_DIM]; for( i = 0; i < dims; i++ ) { size[i] = hist.size[i]; hstep[i] = hist.step[i]; } if( uniform ) { const double* uniranges = &_uniranges[0]; if( dims == 1 ) { double a = uniranges[0], b = uniranges[1]; int sz = size[0], d0 = deltas[0], step0 = deltas[1]; const T* p0 = (const T*)ptrs[0]; for( ; imsize.height--; p0 += step0, mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++, p0 += d0 ) { int idx = cvFloor(*p0*a + b); if( (unsigned)idx < (unsigned)sz ) ((int*)H)[idx]++; } else for( x = 0; x < imsize.width; x++, p0 += d0 ) if( mask[x] ) { int idx = cvFloor(*p0*a + b); if( (unsigned)idx < (unsigned)sz ) ((int*)H)[idx]++; } } } else if( dims == 2 ) { double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3]; int sz0 = size[0], sz1 = size[1]; int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3]; size_t hstep0 = hstep[0]; const T* p0 = (const T*)ptrs[0]; const T* p1 = (const T*)ptrs[1]; for( ; imsize.height--; p0 += step0, p1 += step1, mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) { int idx0 = cvFloor(*p0*a0 + b0); int idx1 = cvFloor(*p1*a1 + b1); if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 ) ((int*)(H + hstep0*idx0))[idx1]++; } else for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) if( mask[x] ) { int idx0 = cvFloor(*p0*a0 + b0); int idx1 = cvFloor(*p1*a1 + b1); if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 ) ((int*)(H + hstep0*idx0))[idx1]++; } } } else if( dims == 3 ) { double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3], a2 = uniranges[4], b2 = uniranges[5]; int sz0 = size[0], sz1 = size[1], sz2 = size[2]; int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3], d2 = deltas[4], step2 = deltas[5]; size_t hstep0 = hstep[0], hstep1 = hstep[1]; const T* p0 = (const T*)ptrs[0]; const T* p1 = (const T*)ptrs[1]; const T* p2 = (const T*)ptrs[2]; for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) { int idx0 = cvFloor(*p0*a0 + b0); int idx1 = cvFloor(*p1*a1 + b1); int idx2 = cvFloor(*p2*a2 + b2); if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 && (unsigned)idx2 < (unsigned)sz2 ) ((int*)(H + hstep0*idx0 + hstep1*idx1))[idx2]++; } else for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) if( mask[x] ) { int idx0 = cvFloor(*p0*a0 + b0); int idx1 = cvFloor(*p1*a1 + b1); int idx2 = cvFloor(*p2*a2 + b2); if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 && (unsigned)idx2 < (unsigned)sz2 ) ((int*)(H + hstep0*idx0 + hstep1*idx1))[idx2]++; } } } else { for( ; imsize.height--; mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; for( i = 0; i < dims; i++ ) { int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); if( (unsigned)idx >= (unsigned)size[i] ) break; ptrs[i] += deltas[i*2]; Hptr += idx*hstep[i]; } if( i == dims ) ++*((int*)Hptr); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } else for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; i = 0; if( mask[x] ) for( ; i < dims; i++ ) { int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); if( (unsigned)idx >= (unsigned)size[i] ) break; ptrs[i] += deltas[i*2]; Hptr += idx*hstep[i]; } if( i == dims ) ++*((int*)Hptr); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } else { // non-uniform histogram const float* ranges[CV_MAX_DIM]; for( i = 0; i < dims; i++ ) ranges[i] = &_ranges[i][0]; for( ; imsize.height--; mask += mstep ) { for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; i = 0; if( !mask || mask[x] ) for( ; i < dims; i++ ) { float v = (float)*ptrs[i]; const float* R = ranges[i]; int idx = -1, sz = size[i]; while( v >= R[idx+1] && ++idx < sz ) ; // nop if( (unsigned)idx >= (unsigned)sz ) break; ptrs[i] += deltas[i*2]; Hptr += idx*hstep[i]; } if( i == dims ) ++*((int*)Hptr); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } static void calcHist_8u( vector& _ptrs, const vector& _deltas, Size imsize, Mat& hist, int dims, const float** _ranges, const double* _uniranges, bool uniform ) { uchar** ptrs = &_ptrs[0]; const int* deltas = &_deltas[0]; uchar* H = hist.data; int i, x; const uchar* mask = _ptrs[dims]; int mstep = _deltas[dims*2 + 1]; vector _tab; calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab ); const size_t* tab = &_tab[0]; if( dims == 1 ) { int d0 = deltas[0], step0 = deltas[1]; int matH[256] = {0}; const uchar* p0 = (const uchar*)ptrs[0]; for( ; imsize.height--; p0 += step0, mask += mstep ) { if( !mask ) { if( d0 == 1 ) { for( x = 0; x <= imsize.width - 4; x += 4 ) { int t0 = p0[x], t1 = p0[x+1]; matH[t0]++; matH[t1]++; t0 = p0[x+2]; t1 = p0[x+3]; matH[t0]++; matH[t1]++; } p0 += x; } else for( x = 0; x <= imsize.width - 4; x += 4 ) { int t0 = p0[0], t1 = p0[d0]; matH[t0]++; matH[t1]++; p0 += d0*2; t0 = p0[0]; t1 = p0[d0]; matH[t0]++; matH[t1]++; p0 += d0*2; } for( ; x < imsize.width; x++, p0 += d0 ) matH[*p0]++; } else for( x = 0; x < imsize.width; x++, p0 += d0 ) if( mask[x] ) matH[*p0]++; } for( i = 0; i < 256; i++ ) { size_t hidx = tab[i]; if( hidx < OUT_OF_RANGE ) *(int*)(H + hidx) += matH[i]; } } else if( dims == 2 ) { int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3]; const uchar* p0 = (const uchar*)ptrs[0]; const uchar* p1 = (const uchar*)ptrs[1]; for( ; imsize.height--; p0 += step0, p1 += step1, mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) { size_t idx = tab[*p0] + tab[*p1 + 256]; if( idx < OUT_OF_RANGE ) ++*(int*)(H + idx); } else for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) { size_t idx; if( mask[x] && (idx = tab[*p0] + tab[*p1 + 256]) < OUT_OF_RANGE ) ++*(int*)(H + idx); } } } else if( dims == 3 ) { int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3], d2 = deltas[4], step2 = deltas[5]; const uchar* p0 = (const uchar*)ptrs[0]; const uchar* p1 = (const uchar*)ptrs[1]; const uchar* p2 = (const uchar*)ptrs[2]; for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) { size_t idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]; if( idx < OUT_OF_RANGE ) ++*(int*)(H + idx); } else for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) { size_t idx; if( mask[x] && (idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]) < OUT_OF_RANGE ) ++*(int*)(H + idx); } } } else { for( ; imsize.height--; mask += mstep ) { if( !mask ) for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; for( i = 0; i < dims; i++ ) { size_t idx = tab[*ptrs[i] + i*256]; if( idx >= OUT_OF_RANGE ) break; Hptr += idx; ptrs[i] += deltas[i*2]; } if( i == dims ) ++*((int*)Hptr); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } else for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; int i = 0; if( mask[x] ) for( ; i < dims; i++ ) { size_t idx = tab[*ptrs[i] + i*256]; if( idx >= OUT_OF_RANGE ) break; Hptr += idx; ptrs[i] += deltas[i*2]; } if( i == dims ) ++*((int*)Hptr); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } } void cv::calcHist( const Mat* images, int nimages, const int* channels, InputArray _mask, OutputArray _hist, int dims, const int* histSize, const float** ranges, bool uniform, bool accumulate ) { Mat mask = _mask.getMat(); CV_Assert(dims > 0 && histSize); uchar* histdata = _hist.getMat().data; _hist.create(dims, histSize, CV_32F); Mat hist = _hist.getMat(), ihist = hist; ihist.flags = (ihist.flags & ~CV_MAT_TYPE_MASK)|CV_32S; if( !accumulate || histdata != hist.data ) hist = Scalar(0.); else hist.convertTo(ihist, CV_32S); vector ptrs; vector deltas; vector uniranges; Size imsize; CV_Assert( !mask.data || mask.type() == CV_8UC1 ); histPrepareImages( images, nimages, channels, mask, dims, hist.size, ranges, uniform, ptrs, deltas, imsize, uniranges ); const double* _uniranges = uniform ? &uniranges[0] : 0; int depth = images[0].depth(); if( depth == CV_8U ) calcHist_8u(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform ); else if( depth == CV_16U ) calcHist_(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform ); else if( depth == CV_32F ) calcHist_(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform ); else CV_Error(CV_StsUnsupportedFormat, ""); ihist.convertTo(hist, CV_32F); } namespace cv { template static void calcSparseHist_( vector& _ptrs, const vector& _deltas, Size imsize, SparseMat& hist, int dims, const float** _ranges, const double* _uniranges, bool uniform ) { T** ptrs = (T**)&_ptrs[0]; const int* deltas = &_deltas[0]; int i, x; const uchar* mask = _ptrs[dims]; int mstep = _deltas[dims*2 + 1]; const int* size = hist.hdr->size; int idx[CV_MAX_DIM]; if( uniform ) { const double* uniranges = &_uniranges[0]; for( ; imsize.height--; mask += mstep ) { for( x = 0; x < imsize.width; x++ ) { i = 0; if( !mask || mask[x] ) for( ; i < dims; i++ ) { idx[i] = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); if( (unsigned)idx[i] >= (unsigned)size[i] ) break; ptrs[i] += deltas[i*2]; } if( i == dims ) ++*(int*)hist.ptr(idx, true); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } else { // non-uniform histogram const float* ranges[CV_MAX_DIM]; for( i = 0; i < dims; i++ ) ranges[i] = &_ranges[i][0]; for( ; imsize.height--; mask += mstep ) { for( x = 0; x < imsize.width; x++ ) { i = 0; if( !mask || mask[x] ) for( ; i < dims; i++ ) { float v = (float)*ptrs[i]; const float* R = ranges[i]; int j = -1, sz = size[i]; while( v >= R[j+1] && ++j < sz ) ; // nop if( (unsigned)j >= (unsigned)sz ) break; ptrs[i] += deltas[i*2]; idx[i] = j; } if( i == dims ) ++*(int*)hist.ptr(idx, true); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } static void calcSparseHist_8u( vector& _ptrs, const vector& _deltas, Size imsize, SparseMat& hist, int dims, const float** _ranges, const double* _uniranges, bool uniform ) { uchar** ptrs = (uchar**)&_ptrs[0]; const int* deltas = &_deltas[0]; int i, x; const uchar* mask = _ptrs[dims]; int mstep = _deltas[dims*2 + 1]; int idx[CV_MAX_DIM]; vector _tab; calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab ); const size_t* tab = &_tab[0]; for( ; imsize.height--; mask += mstep ) { for( x = 0; x < imsize.width; x++ ) { int i = 0; if( !mask || mask[x] ) for( ; i < dims; i++ ) { size_t hidx = tab[*ptrs[i] + i*256]; if( hidx >= OUT_OF_RANGE ) break; ptrs[i] += deltas[i*2]; idx[i] = (int)hidx; } if( i == dims ) ++*(int*)hist.ptr(idx,true); else for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } static void calcHist( const Mat* images, int nimages, const int* channels, const Mat& mask, SparseMat& hist, int dims, const int* histSize, const float** ranges, bool uniform, bool accumulate, bool keepInt ) { size_t i, N; if( !accumulate ) hist.create(dims, histSize, CV_32F); else { SparseMatIterator it = hist.begin(); for( i = 0, N = hist.nzcount(); i < N; i++, ++it ) { Cv32suf* val = (Cv32suf*)it.ptr; val->i = cvRound(val->f); } } vector ptrs; vector deltas; vector uniranges; Size imsize; CV_Assert( !mask.data || mask.type() == CV_8UC1 ); histPrepareImages( images, nimages, channels, mask, dims, hist.hdr->size, ranges, uniform, ptrs, deltas, imsize, uniranges ); const double* _uniranges = uniform ? &uniranges[0] : 0; int depth = images[0].depth(); if( depth == CV_8U ) calcSparseHist_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform ); else if( depth == CV_16U ) calcSparseHist_(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform ); else if( depth == CV_32F ) calcSparseHist_(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform ); else CV_Error(CV_StsUnsupportedFormat, ""); if( !keepInt ) { SparseMatIterator it = hist.begin(); for( i = 0, N = hist.nzcount(); i < N; i++, ++it ) { Cv32suf* val = (Cv32suf*)it.ptr; val->f = (float)val->i; } } } } void cv::calcHist( const Mat* images, int nimages, const int* channels, InputArray _mask, SparseMat& hist, int dims, const int* histSize, const float** ranges, bool uniform, bool accumulate ) { Mat mask = _mask.getMat(); calcHist( images, nimages, channels, mask, hist, dims, histSize, ranges, uniform, accumulate, false ); } void cv::calcHist( InputArrayOfArrays images, const vector& channels, InputArray mask, OutputArray hist, const vector& histSize, const vector& ranges, bool accumulate ) { int i, dims = (int)histSize.size(), rsz = (int)ranges.size(), csz = (int)channels.size(); int nimages = (int)images.total(); CV_Assert(nimages > 0 && dims > 0); CV_Assert(rsz == dims*2 || (rsz == 0 && images.depth(0) == CV_8U)); CV_Assert(csz == 0 || csz == dims); float* _ranges[CV_MAX_DIM]; if( rsz > 0 ) { for( i = 0; i < rsz/2; i++ ) _ranges[i] = (float*)&ranges[i*2]; } AutoBuffer buf(nimages); for( i = 0; i < nimages; i++ ) buf[i] = images.getMat(i); calcHist(&buf[0], nimages, csz ? &channels[0] : 0, mask, hist, dims, &histSize[0], rsz ? (const float**)_ranges : 0, true, accumulate); } /////////////////////////////////////// B A C K P R O J E C T //////////////////////////////////// namespace cv { template static void calcBackProj_( vector& _ptrs, const vector& _deltas, Size imsize, const Mat& hist, int dims, const float** _ranges, const double* _uniranges, float scale, bool uniform ) { T** ptrs = (T**)&_ptrs[0]; const int* deltas = &_deltas[0]; uchar* H = hist.data; int i, x; BT* bproj = (BT*)_ptrs[dims]; int bpstep = _deltas[dims*2 + 1]; int size[CV_MAX_DIM]; size_t hstep[CV_MAX_DIM]; for( i = 0; i < dims; i++ ) { size[i] = hist.size[i]; hstep[i] = hist.step[i]; } if( uniform ) { const double* uniranges = &_uniranges[0]; if( dims == 1 ) { double a = uniranges[0], b = uniranges[1]; int sz = size[0], d0 = deltas[0], step0 = deltas[1]; const T* p0 = (const T*)ptrs[0]; for( ; imsize.height--; p0 += step0, bproj += bpstep ) { for( x = 0; x < imsize.width; x++, p0 += d0 ) { int idx = cvFloor(*p0*a + b); bproj[x] = (unsigned)idx < (unsigned)sz ? saturate_cast(((float*)H)[idx]*scale) : 0; } } } else if( dims == 2 ) { double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3]; int sz0 = size[0], sz1 = size[1]; int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3]; size_t hstep0 = hstep[0]; const T* p0 = (const T*)ptrs[0]; const T* p1 = (const T*)ptrs[1]; for( ; imsize.height--; p0 += step0, p1 += step1, bproj += bpstep ) { for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) { int idx0 = cvFloor(*p0*a0 + b0); int idx1 = cvFloor(*p1*a1 + b1); bproj[x] = (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 ? saturate_cast(((float*)(H + hstep0*idx0))[idx1]*scale) : 0; } } } else if( dims == 3 ) { double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3], a2 = uniranges[4], b2 = uniranges[5]; int sz0 = size[0], sz1 = size[1], sz2 = size[2]; int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3], d2 = deltas[4], step2 = deltas[5]; size_t hstep0 = hstep[0], hstep1 = hstep[1]; const T* p0 = (const T*)ptrs[0]; const T* p1 = (const T*)ptrs[1]; const T* p2 = (const T*)ptrs[2]; for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, bproj += bpstep ) { for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) { int idx0 = cvFloor(*p0*a0 + b0); int idx1 = cvFloor(*p1*a1 + b1); int idx2 = cvFloor(*p2*a2 + b2); bproj[x] = (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 && (unsigned)idx2 < (unsigned)sz2 ? saturate_cast(((float*)(H + hstep0*idx0 + hstep1*idx1))[idx2]*scale) : 0; } } } else { for( ; imsize.height--; bproj += bpstep ) { for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; for( i = 0; i < dims; i++ ) { int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); if( (unsigned)idx >= (unsigned)size[i] || (_ranges && *ptrs[i] >= _ranges[i][1])) break; ptrs[i] += deltas[i*2]; Hptr += idx*hstep[i]; } if( i == dims ) bproj[x] = saturate_cast(*(float*)Hptr*scale); else { bproj[x] = 0; for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } else { // non-uniform histogram const float* ranges[CV_MAX_DIM]; for( i = 0; i < dims; i++ ) ranges[i] = &_ranges[i][0]; for( ; imsize.height--; bproj += bpstep ) { for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; for( i = 0; i < dims; i++ ) { float v = (float)*ptrs[i]; const float* R = ranges[i]; int idx = -1, sz = size[i]; while( v >= R[idx+1] && ++idx < sz ) ; // nop if( (unsigned)idx >= (unsigned)sz ) break; ptrs[i] += deltas[i*2]; Hptr += idx*hstep[i]; } if( i == dims ) bproj[x] = saturate_cast(*(float*)Hptr*scale); else { bproj[x] = 0; for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } static void calcBackProj_8u( vector& _ptrs, const vector& _deltas, Size imsize, const Mat& hist, int dims, const float** _ranges, const double* _uniranges, float scale, bool uniform ) { uchar** ptrs = &_ptrs[0]; const int* deltas = &_deltas[0]; uchar* H = hist.data; int i, x; uchar* bproj = _ptrs[dims]; int bpstep = _deltas[dims*2 + 1]; vector _tab; calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab ); const size_t* tab = &_tab[0]; if( dims == 1 ) { int d0 = deltas[0], step0 = deltas[1]; uchar matH[256] = {0}; const uchar* p0 = (const uchar*)ptrs[0]; for( i = 0; i < 256; i++ ) { size_t hidx = tab[i]; if( hidx < OUT_OF_RANGE ) matH[i] = saturate_cast(*(float*)(H + hidx)*scale); } for( ; imsize.height--; p0 += step0, bproj += bpstep ) { if( d0 == 1 ) { for( x = 0; x <= imsize.width - 4; x += 4 ) { uchar t0 = matH[p0[x]], t1 = matH[p0[x+1]]; bproj[x] = t0; bproj[x+1] = t1; t0 = matH[p0[x+2]]; t1 = matH[p0[x+3]]; bproj[x+2] = t0; bproj[x+3] = t1; } p0 += x; } else for( x = 0; x <= imsize.width - 4; x += 4 ) { uchar t0 = matH[p0[0]], t1 = matH[p0[d0]]; bproj[x] = t0; bproj[x+1] = t1; p0 += d0*2; t0 = matH[p0[0]]; t1 = matH[p0[d0]]; bproj[x+2] = t0; bproj[x+3] = t1; p0 += d0*2; } for( ; x < imsize.width; x++, p0 += d0 ) bproj[x] = matH[*p0]; } } else if( dims == 2 ) { int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3]; const uchar* p0 = (const uchar*)ptrs[0]; const uchar* p1 = (const uchar*)ptrs[1]; for( ; imsize.height--; p0 += step0, p1 += step1, bproj += bpstep ) { for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) { size_t idx = tab[*p0] + tab[*p1 + 256]; bproj[x] = idx < OUT_OF_RANGE ? saturate_cast(*(float*)(H + idx)*scale) : 0; } } } else if( dims == 3 ) { int d0 = deltas[0], step0 = deltas[1], d1 = deltas[2], step1 = deltas[3], d2 = deltas[4], step2 = deltas[5]; const uchar* p0 = (const uchar*)ptrs[0]; const uchar* p1 = (const uchar*)ptrs[1]; const uchar* p2 = (const uchar*)ptrs[2]; for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, bproj += bpstep ) { for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) { size_t idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]; bproj[x] = idx < OUT_OF_RANGE ? saturate_cast(*(float*)(H + idx)*scale) : 0; } } } else { for( ; imsize.height--; bproj += bpstep ) { for( x = 0; x < imsize.width; x++ ) { uchar* Hptr = H; for( i = 0; i < dims; i++ ) { size_t idx = tab[*ptrs[i] + i*256]; if( idx >= OUT_OF_RANGE ) break; ptrs[i] += deltas[i*2]; Hptr += idx; } if( i == dims ) bproj[x] = saturate_cast(*(float*)Hptr*scale); else { bproj[x] = 0; for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } } void cv::calcBackProject( const Mat* images, int nimages, const int* channels, InputArray _hist, OutputArray _backProject, const float** ranges, double scale, bool uniform ) { Mat hist = _hist.getMat(); vector ptrs; vector deltas; vector uniranges; Size imsize; int dims = hist.dims == 2 && hist.size[1] == 1 ? 1 : hist.dims; CV_Assert( dims > 0 && hist.data ); _backProject.create( images[0].size(), images[0].depth() ); Mat backProject = _backProject.getMat(); histPrepareImages( images, nimages, channels, backProject, dims, hist.size, ranges, uniform, ptrs, deltas, imsize, uniranges ); const double* _uniranges = uniform ? &uniranges[0] : 0; int depth = images[0].depth(); if( depth == CV_8U ) calcBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform); else if( depth == CV_16U ) calcBackProj_(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform ); else if( depth == CV_32F ) calcBackProj_(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform ); else CV_Error(CV_StsUnsupportedFormat, ""); } namespace cv { template static void calcSparseBackProj_( vector& _ptrs, const vector& _deltas, Size imsize, const SparseMat& hist, int dims, const float** _ranges, const double* _uniranges, float scale, bool uniform ) { T** ptrs = (T**)&_ptrs[0]; const int* deltas = &_deltas[0]; int i, x; BT* bproj = (BT*)_ptrs[dims]; int bpstep = _deltas[dims*2 + 1]; const int* size = hist.hdr->size; int idx[CV_MAX_DIM]; const SparseMat_& hist_ = (const SparseMat_&)hist; if( uniform ) { const double* uniranges = &_uniranges[0]; for( ; imsize.height--; bproj += bpstep ) { for( x = 0; x < imsize.width; x++ ) { for( i = 0; i < dims; i++ ) { idx[i] = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); if( (unsigned)idx[i] >= (unsigned)size[i] ) break; ptrs[i] += deltas[i*2]; } if( i == dims ) bproj[x] = saturate_cast(hist_(idx)*scale); else { bproj[x] = 0; for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } else { // non-uniform histogram const float* ranges[CV_MAX_DIM]; for( i = 0; i < dims; i++ ) ranges[i] = &_ranges[i][0]; for( ; imsize.height--; bproj += bpstep ) { for( x = 0; x < imsize.width; x++ ) { for( i = 0; i < dims; i++ ) { float v = (float)*ptrs[i]; const float* R = ranges[i]; int j = -1, sz = size[i]; while( v >= R[j+1] && ++j < sz ) ; // nop if( (unsigned)j >= (unsigned)sz ) break; idx[i] = j; ptrs[i] += deltas[i*2]; } if( i == dims ) bproj[x] = saturate_cast(hist_(idx)*scale); else { bproj[x] = 0; for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } static void calcSparseBackProj_8u( vector& _ptrs, const vector& _deltas, Size imsize, const SparseMat& hist, int dims, const float** _ranges, const double* _uniranges, float scale, bool uniform ) { uchar** ptrs = &_ptrs[0]; const int* deltas = &_deltas[0]; int i, x; uchar* bproj = _ptrs[dims]; int bpstep = _deltas[dims*2 + 1]; vector _tab; int idx[CV_MAX_DIM]; calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab ); const size_t* tab = &_tab[0]; for( ; imsize.height--; bproj += bpstep ) { for( x = 0; x < imsize.width; x++ ) { for( i = 0; i < dims; i++ ) { size_t hidx = tab[*ptrs[i] + i*256]; if( hidx >= OUT_OF_RANGE ) break; idx[i] = (int)hidx; ptrs[i] += deltas[i*2]; } if( i == dims ) bproj[x] = saturate_cast(hist.value(idx)*scale); else { bproj[x] = 0; for( ; i < dims; i++ ) ptrs[i] += deltas[i*2]; } } for( i = 0; i < dims; i++ ) ptrs[i] += deltas[i*2 + 1]; } } } void cv::calcBackProject( const Mat* images, int nimages, const int* channels, const SparseMat& hist, OutputArray _backProject, const float** ranges, double scale, bool uniform ) { vector ptrs; vector deltas; vector uniranges; Size imsize; int dims = hist.dims(); CV_Assert( dims > 0 ); _backProject.create( images[0].size(), images[0].depth() ); Mat backProject = _backProject.getMat(); histPrepareImages( images, nimages, channels, backProject, dims, hist.hdr->size, ranges, uniform, ptrs, deltas, imsize, uniranges ); const double* _uniranges = uniform ? &uniranges[0] : 0; int depth = images[0].depth(); if( depth == CV_8U ) calcSparseBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform); else if( depth == CV_16U ) calcSparseBackProj_(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform ); else if( depth == CV_32F ) calcSparseBackProj_(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform ); else CV_Error(CV_StsUnsupportedFormat, ""); } void cv::calcBackProject( InputArrayOfArrays images, const vector& channels, InputArray hist, OutputArray dst, const vector& ranges, double scale ) { Mat H0 = hist.getMat(), H; int hcn = H0.channels(); if( hcn > 1 ) { CV_Assert( H0.isContinuous() ); int hsz[CV_CN_MAX+1]; memcpy(hsz, &H0.size[0], H0.dims*sizeof(hsz[0])); hsz[H0.dims] = hcn; H = Mat(H0.dims+1, hsz, H0.depth(), H0.data); } else H = H0; bool _1d = H.rows == 1 || H.cols == 1; int i, dims = H.dims, rsz = (int)ranges.size(), csz = (int)channels.size(); int nimages = (int)images.total(); CV_Assert(nimages > 0); CV_Assert(rsz == dims*2 || (rsz == 2 && _1d) || (rsz == 0 && images.depth(0) == CV_8U)); CV_Assert(csz == 0 || csz == dims || (csz == 1 && _1d)); float* _ranges[CV_MAX_DIM]; if( rsz > 0 ) { for( i = 0; i < rsz/2; i++ ) _ranges[i] = (float*)&ranges[i*2]; } AutoBuffer buf(nimages); for( i = 0; i < nimages; i++ ) buf[i] = images.getMat(i); calcBackProject(&buf[0], nimages, csz ? &channels[0] : 0, hist, dst, rsz ? (const float**)_ranges : 0, scale, true); } ////////////////// C O M P A R E H I S T O G R A M S //////////////////////// double cv::compareHist( InputArray _H1, InputArray _H2, int method ) { Mat H1 = _H1.getMat(), H2 = _H2.getMat(); const Mat* arrays[] = {&H1, &H2, 0}; Mat planes[2]; NAryMatIterator it(arrays, planes); double result = 0; int j, len = (int)it.size; CV_Assert( H1.type() == H2.type() && H1.type() == CV_32F ); double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0; CV_Assert( it.planes[0].isContinuous() && it.planes[1].isContinuous() ); for( size_t i = 0; i < it.nplanes; i++, ++it ) { const float* h1 = (const float*)it.planes[0].data; const float* h2 = (const float*)it.planes[1].data; len = it.planes[0].rows*it.planes[0].cols; if( method == CV_COMP_CHISQR ) { for( j = 0; j < len; j++ ) { double a = h1[j] - h2[j]; double b = h1[j]; if( fabs(b) > DBL_EPSILON ) result += a*a/b; } } else if( method == CV_COMP_CORREL ) { for( j = 0; j < len; j++ ) { double a = h1[j]; double b = h2[j]; s12 += a*b; s1 += a; s11 += a*a; s2 += b; s22 += b*b; } } else if( method == CV_COMP_INTERSECT ) { for( j = 0; j < len; j++ ) result += std::min(h1[j], h2[j]); } else if( method == CV_COMP_BHATTACHARYYA ) { for( j = 0; j < len; j++ ) { double a = h1[j]; double b = h2[j]; result += std::sqrt(a*b); s1 += a; s2 += b; } } else CV_Error( CV_StsBadArg, "Unknown comparison method" ); } if( method == CV_COMP_CORREL ) { size_t total = H1.total(); double scale = 1./total; double num = s12 - s1*s2*scale; double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.; } else if( method == CV_COMP_BHATTACHARYYA ) { s1 *= s2; s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.; result = std::sqrt(std::max(1. - result*s1, 0.)); } return result; } double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method ) { double result = 0; int i, dims = H1.dims(); CV_Assert( dims > 0 && dims == H2.dims() && H1.type() == H2.type() && H1.type() == CV_32F ); for( i = 0; i < dims; i++ ) CV_Assert( H1.size(i) == H2.size(i) ); const SparseMat *PH1 = &H1, *PH2 = &H2; if( PH1->nzcount() > PH2->nzcount() && method != CV_COMP_CHISQR ) std::swap(PH1, PH2); SparseMatConstIterator it = PH1->begin(); int N1 = (int)PH1->nzcount(), N2 = (int)PH2->nzcount(); if( method == CV_COMP_CHISQR ) { for( i = 0; i < N1; i++, ++it ) { float v1 = it.value(); const SparseMat::Node* node = it.node(); float v2 = PH2->value(node->idx, (size_t*)&node->hashval); double a = v1 - v2; double b = v1; if( fabs(b) > DBL_EPSILON ) result += a*a/b; } } else if( method == CV_COMP_CORREL ) { double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0; for( i = 0; i < N1; i++, ++it ) { double v1 = it.value(); const SparseMat::Node* node = it.node(); s12 += v1*PH2->value(node->idx, (size_t*)&node->hashval); s1 += v1; s11 += v1*v1; } it = PH2->begin(); for( i = 0; i < N2; i++, ++it ) { double v2 = it.value(); s2 += v2; s22 += v2*v2; } size_t total = 1; for( i = 0; i < H1.dims(); i++ ) total *= H1.size(i); double scale = 1./total; double num = s12 - s1*s2*scale; double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.; } else if( method == CV_COMP_INTERSECT ) { for( i = 0; i < N1; i++, ++it ) { float v1 = it.value(); const SparseMat::Node* node = it.node(); float v2 = PH2->value(node->idx, (size_t*)&node->hashval); if( v2 ) result += std::min(v1, v2); } } else if( method == CV_COMP_BHATTACHARYYA ) { double s1 = 0, s2 = 0; for( i = 0; i < N1; i++, ++it ) { double v1 = it.value(); const SparseMat::Node* node = it.node(); double v2 = PH2->value(node->idx, (size_t*)&node->hashval); result += std::sqrt(v1*v2); s1 += v1; } it = PH2->begin(); for( i = 0; i < N2; i++, ++it ) s2 += it.value(); s1 *= s2; s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.; result = std::sqrt(std::max(1. - result*s1, 0.)); } else CV_Error( CV_StsBadArg, "Unknown comparison method" ); return result; } const int CV_HIST_DEFAULT_TYPE = CV_32F; /* Creates new histogram */ CvHistogram * cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform ) { CvHistogram *hist = 0; if( (unsigned)dims > CV_MAX_DIM ) CV_Error( CV_BadOrder, "Number of dimensions is out of range" ); if( !sizes ) CV_Error( CV_HeaderIsNull, "Null pointer" ); hist = (CvHistogram *)cvAlloc( sizeof( CvHistogram )); hist->type = CV_HIST_MAGIC_VAL + ((int)type & 1); if (uniform) hist->type|= CV_HIST_UNIFORM_FLAG; hist->thresh2 = 0; hist->bins = 0; if( type == CV_HIST_ARRAY ) { hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE ); cvCreateData( hist->bins ); } else if( type == CV_HIST_SPARSE ) hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE ); else CV_Error( CV_StsBadArg, "Invalid histogram type" ); if( ranges ) cvSetHistBinRanges( hist, ranges, uniform ); return hist; } /* Creates histogram wrapping header for given array */ CV_IMPL CvHistogram* cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist, float *data, float **ranges, int uniform ) { if( !hist ) CV_Error( CV_StsNullPtr, "Null histogram header pointer" ); if( !data ) CV_Error( CV_StsNullPtr, "Null data pointer" ); hist->thresh2 = 0; hist->type = CV_HIST_MAGIC_VAL; hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE, data ); if( ranges ) { if( !uniform ) CV_Error( CV_StsBadArg, "Only uniform bin ranges can be used here " "(to avoid memory allocation)" ); cvSetHistBinRanges( hist, ranges, uniform ); } return hist; } CV_IMPL void cvReleaseHist( CvHistogram **hist ) { if( !hist ) CV_Error( CV_StsNullPtr, "" ); if( *hist ) { CvHistogram* temp = *hist; if( !CV_IS_HIST(temp)) CV_Error( CV_StsBadArg, "Invalid histogram header" ); *hist = 0; if( CV_IS_SPARSE_HIST( temp )) cvReleaseSparseMat( (CvSparseMat**)&temp->bins ); else { cvReleaseData( temp->bins ); temp->bins = 0; } if( temp->thresh2 ) cvFree( &temp->thresh2 ); cvFree( &temp ); } } CV_IMPL void cvClearHist( CvHistogram *hist ) { if( !CV_IS_HIST(hist) ) CV_Error( CV_StsBadArg, "Invalid histogram header" ); cvZero( hist->bins ); } // Clears histogram bins that are below than threshold CV_IMPL void cvThreshHist( CvHistogram* hist, double thresh ) { if( !CV_IS_HIST(hist) ) CV_Error( CV_StsBadArg, "Invalid histogram header" ); if( !CV_IS_SPARSE_MAT(hist->bins) ) { CvMat mat; cvGetMat( hist->bins, &mat, 0, 1 ); cvThreshold( &mat, &mat, thresh, 0, CV_THRESH_TOZERO ); } else { CvSparseMat* mat = (CvSparseMat*)hist->bins; CvSparseMatIterator iterator; CvSparseNode *node; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { float* val = (float*)CV_NODE_VAL( mat, node ); if( *val <= thresh ) *val = 0; } } } // Normalizes histogram (make sum of the histogram bins == factor) CV_IMPL void cvNormalizeHist( CvHistogram* hist, double factor ) { double sum = 0; if( !CV_IS_HIST(hist) ) CV_Error( CV_StsBadArg, "Invalid histogram header" ); if( !CV_IS_SPARSE_HIST(hist) ) { CvMat mat; cvGetMat( hist->bins, &mat, 0, 1 ); sum = cvSum( &mat ).val[0]; if( fabs(sum) < DBL_EPSILON ) sum = 1; cvScale( &mat, &mat, factor/sum, 0 ); } else { CvSparseMat* mat = (CvSparseMat*)hist->bins; CvSparseMatIterator iterator; CvSparseNode *node; float scale; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { sum += *(float*)CV_NODE_VAL(mat,node); } if( fabs(sum) < DBL_EPSILON ) sum = 1; scale = (float)(factor/sum); for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { *(float*)CV_NODE_VAL(mat,node) *= scale; } } } // Retrieves histogram global min, max and their positions CV_IMPL void cvGetMinMaxHistValue( const CvHistogram* hist, float *value_min, float* value_max, int* idx_min, int* idx_max ) { double minVal, maxVal; int i, dims, size[CV_MAX_DIM]; if( !CV_IS_HIST(hist) ) CV_Error( CV_StsBadArg, "Invalid histogram header" ); dims = cvGetDims( hist->bins, size ); if( !CV_IS_SPARSE_HIST(hist) ) { CvMat mat; CvPoint minPt, maxPt; cvGetMat( hist->bins, &mat, 0, 1 ); cvMinMaxLoc( &mat, &minVal, &maxVal, &minPt, &maxPt ); if( dims == 1 ) { if( idx_min ) *idx_min = minPt.y + minPt.x; if( idx_max ) *idx_max = maxPt.y + maxPt.x; } else if( dims == 2 ) { if( idx_min ) idx_min[0] = minPt.y, idx_min[1] = minPt.x; if( idx_max ) idx_max[0] = maxPt.y, idx_max[1] = maxPt.x; } else if( idx_min || idx_max ) { int imin = minPt.y*mat.cols + minPt.x; int imax = maxPt.y*mat.cols + maxPt.x; int i; for( i = dims - 1; i >= 0; i-- ) { if( idx_min ) { int t = imin / size[i]; idx_min[i] = imin - t*size[i]; imin = t; } if( idx_max ) { int t = imax / size[i]; idx_max[i] = imax - t*size[i]; imax = t; } } } } else { CvSparseMat* mat = (CvSparseMat*)hist->bins; CvSparseMatIterator iterator; CvSparseNode *node; int minv = INT_MAX; int maxv = INT_MIN; CvSparseNode* minNode = 0; CvSparseNode* maxNode = 0; const int *_idx_min = 0, *_idx_max = 0; Cv32suf m; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { int value = *(int*)CV_NODE_VAL(mat,node); value = CV_TOGGLE_FLT(value); if( value < minv ) { minv = value; minNode = node; } if( value > maxv ) { maxv = value; maxNode = node; } } if( minNode ) { _idx_min = CV_NODE_IDX(mat,minNode); _idx_max = CV_NODE_IDX(mat,maxNode); m.i = CV_TOGGLE_FLT(minv); minVal = m.f; m.i = CV_TOGGLE_FLT(maxv); maxVal = m.f; } else { minVal = maxVal = 0; } for( i = 0; i < dims; i++ ) { if( idx_min ) idx_min[i] = _idx_min ? _idx_min[i] : -1; if( idx_max ) idx_max[i] = _idx_max ? _idx_max[i] : -1; } } if( value_min ) *value_min = (float)minVal; if( value_max ) *value_max = (float)maxVal; } // Compares two histograms using one of a few methods CV_IMPL double cvCompareHist( const CvHistogram* hist1, const CvHistogram* hist2, int method ) { int i; int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) ) CV_Error( CV_StsBadArg, "Invalid histogram header[s]" ); if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins)) CV_Error(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not"); if( !CV_IS_SPARSE_MAT(hist1->bins) ) { cv::Mat H1((const CvMatND*)hist1->bins), H2((const CvMatND*)hist2->bins); return cv::compareHist(H1, H2, method); } int dims1 = cvGetDims( hist1->bins, size1 ); int dims2 = cvGetDims( hist2->bins, size2 ); if( dims1 != dims2 ) CV_Error( CV_StsUnmatchedSizes, "The histograms have different numbers of dimensions" ); for( i = 0; i < dims1; i++ ) { if( size1[i] != size2[i] ) CV_Error( CV_StsUnmatchedSizes, "The histograms have different sizes" ); total *= size1[i]; } double result = 0; CvSparseMat* mat1 = (CvSparseMat*)(hist1->bins); CvSparseMat* mat2 = (CvSparseMat*)(hist2->bins); CvSparseMatIterator iterator; CvSparseNode *node1, *node2; if( mat1->heap->active_count > mat2->heap->active_count && method != CV_COMP_CHISQR ) { CvSparseMat* t; CV_SWAP( mat1, mat2, t ); } if( method == CV_COMP_CHISQR ) { for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); double v2 = node2_data ? *(float*)node2_data : 0.f; double a = v1 - v2; double b = v1; if( fabs(b) > DBL_EPSILON ) result += a*a/b; } } else if( method == CV_COMP_CORREL ) { double s1 = 0, s11 = 0; double s2 = 0, s22 = 0; double s12 = 0; double num, denom2, scale = 1./total; for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); if( node2_data ) { double v2 = *(float*)node2_data; s12 += v1*v2; } s1 += v1; s11 += v1*v1; } for( node2 = cvInitSparseMatIterator( mat2, &iterator ); node2 != 0; node2 = cvGetNextSparseNode( &iterator )) { double v2 = *(float*)CV_NODE_VAL(mat2,node2); s2 += v2; s22 += v2*v2; } num = s12 - s1*s2*scale; denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1; } else if( method == CV_COMP_INTERSECT ) { for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { float v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); if( node2_data ) { float v2 = *(float*)node2_data; if( v1 <= v2 ) result += v1; else result += v2; } } } else if( method == CV_COMP_BHATTACHARYYA ) { double s1 = 0, s2 = 0; for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); s1 += v1; if( node2_data ) { double v2 = *(float*)node2_data; result += sqrt(v1 * v2); } } for( node1 = cvInitSparseMatIterator( mat2, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v2 = *(float*)CV_NODE_VAL(mat2,node1); s2 += v2; } s1 *= s2; s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.; result = 1. - result*s1; result = sqrt(MAX(result,0.)); } else CV_Error( CV_StsBadArg, "Unknown comparison method" ); return result; } // copies one histogram to another CV_IMPL void cvCopyHist( const CvHistogram* src, CvHistogram** _dst ) { int eq = 0; int is_sparse; int i, dims1, dims2; int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; float* ranges[CV_MAX_DIM]; float** thresh = 0; CvHistogram* dst; if( !_dst ) CV_Error( CV_StsNullPtr, "Destination double pointer is NULL" ); dst = *_dst; if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) ) CV_Error( CV_StsBadArg, "Invalid histogram header[s]" ); is_sparse = CV_IS_SPARSE_MAT(src->bins); dims1 = cvGetDims( src->bins, size1 ); for( i = 0; i < dims1; i++ ) total *= size1[i]; if( dst && is_sparse == CV_IS_SPARSE_MAT(dst->bins)) { dims2 = cvGetDims( dst->bins, size2 ); if( dims1 == dims2 ) { for( i = 0; i < dims1; i++ ) if( size1[i] != size2[i] ) break; } eq = i == dims1; } if( !eq ) { cvReleaseHist( _dst ); dst = cvCreateHist( dims1, size1, !is_sparse ? CV_HIST_ARRAY : CV_HIST_SPARSE, 0, 0 ); *_dst = dst; } if( CV_HIST_HAS_RANGES( src )) { if( CV_IS_UNIFORM_HIST( src )) { for( i = 0; i < dims1; i++ ) ranges[i] = (float*)src->thresh[i]; thresh = ranges; } else thresh = src->thresh2; cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src)); } cvCopy( src->bins, dst->bins ); } // Sets a value range for every histogram bin CV_IMPL void cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform ) { int dims, size[CV_MAX_DIM], total = 0; int i, j; if( !ranges ) CV_Error( CV_StsNullPtr, "NULL ranges pointer" ); if( !CV_IS_HIST(hist) ) CV_Error( CV_StsBadArg, "Invalid histogram header" ); dims = cvGetDims( hist->bins, size ); for( i = 0; i < dims; i++ ) total += size[i]+1; if( uniform ) { for( i = 0; i < dims; i++ ) { if( !ranges[i] ) CV_Error( CV_StsNullPtr, "One of elements is NULL" ); hist->thresh[i][0] = ranges[i][0]; hist->thresh[i][1] = ranges[i][1]; } hist->type |= CV_HIST_UNIFORM_FLAG + CV_HIST_RANGES_FLAG; } else { float* dim_ranges; if( !hist->thresh2 ) { hist->thresh2 = (float**)cvAlloc( dims*sizeof(hist->thresh2[0])+ total*sizeof(hist->thresh2[0][0])); } dim_ranges = (float*)(hist->thresh2 + dims); for( i = 0; i < dims; i++ ) { float val0 = -FLT_MAX; if( !ranges[i] ) CV_Error( CV_StsNullPtr, "One of elements is NULL" ); for( j = 0; j <= size[i]; j++ ) { float val = ranges[i][j]; if( val <= val0 ) CV_Error(CV_StsOutOfRange, "Bin ranges should go in ascenting order"); val0 = dim_ranges[j] = val; } hist->thresh2[i] = dim_ranges; dim_ranges += size[i] + 1; } hist->type |= CV_HIST_RANGES_FLAG; hist->type &= ~CV_HIST_UNIFORM_FLAG; } } CV_IMPL void cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask ) { if( !CV_IS_HIST(hist)) CV_Error( CV_StsBadArg, "Bad histogram pointer" ); if( !img ) CV_Error( CV_StsNullPtr, "Null double array pointer" ); int size[CV_MAX_DIM]; int i, dims = cvGetDims( hist->bins, size); bool uniform = CV_IS_UNIFORM_HIST(hist); cv::vector images(dims); for( i = 0; i < dims; i++ ) images[i] = cv::cvarrToMat(img[i]); cv::Mat _mask; if( mask ) _mask = cv::cvarrToMat(mask); const float* uranges[CV_MAX_DIM] = {0}; const float** ranges = 0; if( hist->type & CV_HIST_RANGES_FLAG ) { ranges = (const float**)hist->thresh2; if( uniform ) { for( i = 0; i < dims; i++ ) uranges[i] = &hist->thresh[i][0]; ranges = uranges; } } if( !CV_IS_SPARSE_HIST(hist) ) { cv::Mat H((const CvMatND*)hist->bins); cv::calcHist( &images[0], (int)images.size(), 0, _mask, H, cvGetDims(hist->bins), H.size, ranges, uniform, accumulate != 0 ); } else { CvSparseMat* sparsemat = (CvSparseMat*)hist->bins; if( !accumulate ) cvZero( hist->bins ); cv::SparseMat sH(sparsemat); cv::calcHist( &images[0], (int)images.size(), 0, _mask, sH, sH.dims(), sH.dims() > 0 ? sH.hdr->size : 0, ranges, uniform, accumulate != 0, true ); if( accumulate ) cvZero( sparsemat ); cv::SparseMatConstIterator it = sH.begin(); int nz = (int)sH.nzcount(); for( i = 0; i < nz; i++, ++it ) *(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = (float)*(const int*)it.ptr; } } CV_IMPL void cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist ) { if( !CV_IS_HIST(hist)) CV_Error( CV_StsBadArg, "Bad histogram pointer" ); if( !img ) CV_Error( CV_StsNullPtr, "Null double array pointer" ); int size[CV_MAX_DIM]; int i, dims = cvGetDims( hist->bins, size ); bool uniform = CV_IS_UNIFORM_HIST(hist); const float* uranges[CV_MAX_DIM] = {0}; const float** ranges = 0; if( hist->type & CV_HIST_RANGES_FLAG ) { ranges = (const float**)hist->thresh2; if( uniform ) { for( i = 0; i < dims; i++ ) uranges[i] = &hist->thresh[i][0]; ranges = uranges; } } cv::vector images(dims); for( i = 0; i < dims; i++ ) images[i] = cv::cvarrToMat(img[i]); cv::Mat _dst = cv::cvarrToMat(dst); CV_Assert( _dst.size() == images[0].size() && _dst.depth() == images[0].depth() ); if( !CV_IS_SPARSE_HIST(hist) ) { cv::Mat H((const CvMatND*)hist->bins); cv::calcBackProject( &images[0], (int)images.size(), 0, H, _dst, ranges, 1, uniform ); } else { cv::SparseMat sH((const CvSparseMat*)hist->bins); cv::calcBackProject( &images[0], (int)images.size(), 0, sH, _dst, ranges, 1, uniform ); } } ////////////////////// B A C K P R O J E C T P A T C H ///////////////////////// CV_IMPL void cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogram* hist, int method, double norm_factor ) { CvHistogram* model = 0; IplImage imgstub[CV_MAX_DIM], *img[CV_MAX_DIM]; IplROI roi; CvMat dststub, *dstmat; int i, dims; int x, y; CvSize size; if( !CV_IS_HIST(hist)) CV_Error( CV_StsBadArg, "Bad histogram pointer" ); if( !arr ) CV_Error( CV_StsNullPtr, "Null double array pointer" ); if( norm_factor <= 0 ) CV_Error( CV_StsOutOfRange, "Bad normalization factor (set it to 1.0 if unsure)" ); if( patch_size.width <= 0 || patch_size.height <= 0 ) CV_Error( CV_StsBadSize, "The patch width and height must be positive" ); dims = cvGetDims( hist->bins ); cvNormalizeHist( hist, norm_factor ); for( i = 0; i < dims; i++ ) { CvMat stub, *mat; mat = cvGetMat( arr[i], &stub, 0, 0 ); img[i] = cvGetImage( mat, &imgstub[i] ); img[i]->roi = &roi; } dstmat = cvGetMat( dst, &dststub, 0, 0 ); if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 ) CV_Error( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" ); if( dstmat->cols != img[0]->width - patch_size.width + 1 || dstmat->rows != img[0]->height - patch_size.height + 1 ) CV_Error( CV_StsUnmatchedSizes, "The output map must be (W-w+1 x H-h+1), " "where the input images are (W x H) each and the patch is (w x h)" ); cvCopyHist( hist, &model ); size = cvGetMatSize(dstmat); roi.coi = 0; roi.width = patch_size.width; roi.height = patch_size.height; for( y = 0; y < size.height; y++ ) { for( x = 0; x < size.width; x++ ) { double result; roi.xOffset = x; roi.yOffset = y; cvCalcHist( img, model ); cvNormalizeHist( model, norm_factor ); result = cvCompareHist( model, hist, method ); CV_MAT_ELEM( *dstmat, float, y, x ) = (float)result; } } cvReleaseHist( &model ); } // Calculates Bayes probabilistic histograms CV_IMPL void cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst ) { int i; if( !src || !dst ) CV_Error( CV_StsNullPtr, "NULL histogram array pointer" ); if( count < 2 ) CV_Error( CV_StsOutOfRange, "Too small number of histograms" ); for( i = 0; i < count; i++ ) { if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) ) CV_Error( CV_StsBadArg, "Invalid histogram header" ); if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) ) CV_Error( CV_StsBadArg, "The function supports dense histograms only" ); } cvZero( dst[0]->bins ); // dst[0] = src[0] + ... + src[count-1] for( i = 0; i < count; i++ ) cvAdd( src[i]->bins, dst[0]->bins, dst[0]->bins ); cvDiv( 0, dst[0]->bins, dst[0]->bins ); // dst[i] = src[i]*(1/dst[0]) for( i = count - 1; i >= 0; i-- ) cvMul( src[i]->bins, dst[0]->bins, dst[i]->bins ); } CV_IMPL void cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask, CvHistogram* hist_dens, double scale ) { if( scale <= 0 ) CV_Error( CV_StsOutOfRange, "scale must be positive" ); if( !CV_IS_HIST(hist) || !CV_IS_HIST(hist_mask) || !CV_IS_HIST(hist_dens) ) CV_Error( CV_StsBadArg, "Invalid histogram pointer[s]" ); { CvArr* arrs[] = { hist->bins, hist_mask->bins, hist_dens->bins }; CvMatND stubs[3]; CvNArrayIterator iterator; cvInitNArrayIterator( 3, arrs, 0, stubs, &iterator ); if( CV_MAT_TYPE(iterator.hdr[0]->type) != CV_32FC1 ) CV_Error( CV_StsUnsupportedFormat, "All histograms must have 32fC1 type" ); do { const float* srcdata = (const float*)(iterator.ptr[0]); const float* maskdata = (const float*)(iterator.ptr[1]); float* dstdata = (float*)(iterator.ptr[2]); int i; for( i = 0; i < iterator.size.width; i++ ) { float s = srcdata[i]; float m = maskdata[i]; if( s > FLT_EPSILON ) if( m <= s ) dstdata[i] = (float)(m*scale/s); else dstdata[i] = (float)scale; else dstdata[i] = (float)0; } } while( cvNextNArraySlice( &iterator )); } } CV_IMPL void cvEqualizeHist( const CvArr* srcarr, CvArr* dstarr ) { CvMat sstub, *src = cvGetMat(srcarr, &sstub); CvMat dstub, *dst = cvGetMat(dstarr, &dstub); CV_Assert( CV_ARE_SIZES_EQ(src, dst) && CV_ARE_TYPES_EQ(src, dst) && CV_MAT_TYPE(src->type) == CV_8UC1 ); CvSize size = cvGetMatSize(src); if( CV_IS_MAT_CONT(src->type & dst->type) ) { size.width *= size.height; size.height = 1; } int x, y; const int hist_sz = 256; int hist[hist_sz]; memset(hist, 0, sizeof(hist)); for( y = 0; y < size.height; y++ ) { const uchar* sptr = src->data.ptr + src->step*y; for( x = 0; x < size.width; x++ ) hist[sptr[x]]++; } float scale = 255.f/(size.width*size.height); int sum = 0; uchar lut[hist_sz+1]; for( int i = 0; i < hist_sz; i++ ) { sum += hist[i]; int val = cvRound(sum*scale); lut[i] = CV_CAST_8U(val); } lut[0] = 0; for( y = 0; y < size.height; y++ ) { const uchar* sptr = src->data.ptr + src->step*y; uchar* dptr = dst->data.ptr + dst->step*y; for( x = 0; x < size.width; x++ ) dptr[x] = lut[sptr[x]]; } } void cv::equalizeHist( InputArray _src, OutputArray _dst ) { Mat src = _src.getMat(); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); CvMat _csrc = src, _cdst = dst; cvEqualizeHist( &_csrc, &_cdst ); } /* Implementation of RTTI and Generic Functions for CvHistogram */ #define CV_TYPE_NAME_HIST "opencv-hist" static int icvIsHist( const void * ptr ) { return CV_IS_HIST( ((CvHistogram*)ptr) ); } static CvHistogram * icvCloneHist( const CvHistogram * src ) { CvHistogram * dst=NULL; cvCopyHist(src, &dst); return dst; } static void *icvReadHist( CvFileStorage * fs, CvFileNode * node ) { CvHistogram * h = 0; int type = 0; int is_uniform = 0; int have_ranges = 0; h = (CvHistogram *)cvAlloc( sizeof(CvHistogram) ); type = cvReadIntByName( fs, node, "type", 0 ); is_uniform = cvReadIntByName( fs, node, "is_uniform", 0 ); have_ranges = cvReadIntByName( fs, node, "have_ranges", 0 ); h->type = CV_HIST_MAGIC_VAL | type | (is_uniform ? CV_HIST_UNIFORM_FLAG : 0) | (have_ranges ? CV_HIST_RANGES_FLAG : 0); if(type == CV_HIST_ARRAY) { // read histogram bins CvMatND* mat = (CvMatND*)cvReadByName( fs, node, "mat" ); int i, sizes[CV_MAX_DIM]; if(!CV_IS_MATND(mat)) CV_Error( CV_StsError, "Expected CvMatND"); for(i=0; idims; i++) sizes[i] = mat->dim[i].size; cvInitMatNDHeader( &(h->mat), mat->dims, sizes, mat->type, mat->data.ptr ); h->bins = &(h->mat); // take ownership of refcount pointer as well h->mat.refcount = mat->refcount; // increase refcount so freeing temp header doesn't free data cvIncRefData( mat ); // free temporary header cvReleaseMatND( &mat ); } else { h->bins = cvReadByName( fs, node, "bins" ); if(!CV_IS_SPARSE_MAT(h->bins)){ CV_Error( CV_StsError, "Unknown Histogram type"); } } // read thresholds if(have_ranges) { int i, dims, size[CV_MAX_DIM], total = 0; CvSeqReader reader; CvFileNode * thresh_node; dims = cvGetDims( h->bins, size ); for( i = 0; i < dims; i++ ) total += size[i]+1; thresh_node = cvGetFileNodeByName( fs, node, "thresh" ); if(!thresh_node) CV_Error( CV_StsError, "'thresh' node is missing"); cvStartReadRawData( fs, thresh_node, &reader ); if(is_uniform) { for(i=0; ithresh[i], "f" ); h->thresh2 = NULL; } else { float* dim_ranges; h->thresh2 = (float**)cvAlloc( dims*sizeof(h->thresh2[0])+ total*sizeof(h->thresh2[0][0])); dim_ranges = (float*)(h->thresh2 + dims); for(i=0; i < dims; i++) { h->thresh2[i] = dim_ranges; cvReadRawDataSlice( fs, &reader, size[i]+1, dim_ranges, "f" ); dim_ranges += size[i] + 1; } } } return h; } static void icvWriteHist( CvFileStorage* fs, const char* name, const void* struct_ptr, CvAttrList /*attributes*/ ) { const CvHistogram * hist = (const CvHistogram *) struct_ptr; int sizes[CV_MAX_DIM]; int dims; int i; int is_uniform, have_ranges; cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HIST ); is_uniform = (CV_IS_UNIFORM_HIST(hist) ? 1 : 0); have_ranges = (hist->type & CV_HIST_RANGES_FLAG ? 1 : 0); cvWriteInt( fs, "type", (hist->type & 1) ); cvWriteInt( fs, "is_uniform", is_uniform ); cvWriteInt( fs, "have_ranges", have_ranges ); if(!CV_IS_SPARSE_HIST(hist)) cvWrite( fs, "mat", &(hist->mat) ); else cvWrite( fs, "bins", hist->bins ); // write thresholds if(have_ranges){ dims = cvGetDims( hist->bins, sizes ); cvStartWriteStruct( fs, "thresh", CV_NODE_SEQ + CV_NODE_FLOW ); if(is_uniform){ for(i=0; ithresh[i], 2, "f" ); } } else{ for(i=0; ithresh2[i], sizes[i]+1, "f" ); } } cvEndWriteStruct( fs ); } cvEndWriteStruct( fs ); } CvType hist_type( CV_TYPE_NAME_HIST, icvIsHist, (CvReleaseFunc)cvReleaseHist, icvReadHist, icvWriteHist, (CvCloneFunc)icvCloneHist ); /* End of file. */