/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/gpumat.hpp" #include #ifdef HAVE_CUDA #include #include #include #define CUDART_MINIMUM_REQUIRED_VERSION 4010 #define NPP_MINIMUM_REQUIRED_VERSION 4100 #if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION) #error "Insufficient Cuda Runtime library version, please update it." #endif #if (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD < NPP_MINIMUM_REQUIRED_VERSION) #error "Insufficient NPP version, please update it." #endif #endif using namespace std; using namespace cv; using namespace cv::gpu; //////////////////////////////// Initialization & Info //////////////////////// namespace { // Compares value to set using the given comparator. Returns true if // there is at least one element x in the set satisfying to: x cmp value // predicate. template bool compareToSet(const std::string& set_as_str, int value, Comparer cmp) { if (set_as_str.find_first_not_of(" ") == string::npos) return false; std::stringstream stream(set_as_str); int cur_value; while (!stream.eof()) { stream >> cur_value; if (cmp(cur_value, value)) return true; } return false; } } bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set) { #ifdef HAVE_CUDA return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal()); #else (void)feature_set; return false; #endif } bool cv::gpu::TargetArchs::has(int major, int minor) { return hasPtx(major, minor) || hasBin(major, minor); } bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { #ifdef HAVE_CUDA return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasBin(int major, int minor) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { #ifdef HAVE_CUDA return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::less_equal()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { #ifdef HAVE_CUDA return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::greater_equal()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { #ifdef HAVE_CUDA return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::greater_equal()); #else (void)major; (void)minor; return false; #endif } #ifndef HAVE_CUDA #define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support") int cv::gpu::getCudaEnabledDeviceCount() { return 0; } void cv::gpu::setDevice(int) { throw_nogpu; } int cv::gpu::getDevice() { throw_nogpu; return 0; } void cv::gpu::resetDevice() { throw_nogpu; } size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu; return 0; } size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu; return 0; } bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu; return false; } bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu; return false; } void cv::gpu::DeviceInfo::query() { throw_nogpu; } void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu; } void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu; } void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu; } #undef throw_nogpu #else // HAVE_CUDA namespace { #if defined(__GNUC__) #define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__) #define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__) #else /* defined(__CUDACC__) || defined(__MSVC__) */ #define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__) #define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__) #endif inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "") { if (cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), file, line, func); } inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "") { if (err < 0) { std::ostringstream msg; msg << "NPP API Call Error: " << err; cv::gpu::error(msg.str().c_str(), file, line, func); } } } int cv::gpu::getCudaEnabledDeviceCount() { int count; cudaError_t error = cudaGetDeviceCount( &count ); if (error == cudaErrorInsufficientDriver) return -1; if (error == cudaErrorNoDevice) return 0; cudaSafeCall(error); return count; } void cv::gpu::setDevice(int device) { cudaSafeCall( cudaSetDevice( device ) ); } int cv::gpu::getDevice() { int device; cudaSafeCall( cudaGetDevice( &device ) ); return device; } void cv::gpu::resetDevice() { cudaSafeCall( cudaDeviceReset() ); } size_t cv::gpu::DeviceInfo::freeMemory() const { size_t free_memory, total_memory; queryMemory(free_memory, total_memory); return free_memory; } size_t cv::gpu::DeviceInfo::totalMemory() const { size_t free_memory, total_memory; queryMemory(free_memory, total_memory); return total_memory; } bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const { int version = majorVersion() * 10 + minorVersion(); return version >= feature_set; } bool cv::gpu::DeviceInfo::isCompatible() const { // Check PTX compatibility if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion())) return true; // Check BIN compatibility for (int i = minorVersion(); i >= 0; --i) if (TargetArchs::hasBin(majorVersion(), i)) return true; return false; } void cv::gpu::DeviceInfo::query() { cudaDeviceProp prop; cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_)); name_ = prop.name; multi_processor_count_ = prop.multiProcessorCount; majorVersion_ = prop.major; minorVersion_ = prop.minor; } void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const { int prev_device_id = getDevice(); if (prev_device_id != device_id_) setDevice(device_id_); cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory)); if (prev_device_id != device_id_) setDevice(prev_device_id); } namespace { template void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device) { *attribute = T(); //CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu?? CUresult error = cuDeviceGetAttribute( attribute, device_attribute, device ); if( CUDA_SUCCESS == error ) return; printf("Driver API error = %04d\n", error); cv::gpu::error("driver API error", __FILE__, __LINE__); } int convertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM typedef struct { int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version int Cores; } SMtoCores; SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, { -1, -1 } }; int index = 0; while (gpuArchCoresPerSM[index].SM != -1) { if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) return gpuArchCoresPerSM[index].Cores; index++; } printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor); return -1; } } void cv::gpu::printCudaDeviceInfo(int device) { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); printf("Device count: %d\n", count); int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); const char *computeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this device)", "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", "Unknown", NULL }; for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); printf("\nDevice %d: \"%s\"\n", dev, prop.name); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor); printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem); printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor), convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount); printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); // This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output int memoryClock, memBusWidth, L2CacheSize; getCudaAttribute( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev ); getCudaAttribute( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev ); getCudaAttribute( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev ); printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f); printf(" Memory Bus Width: %d-bit\n", memBusWidth); if (L2CacheSize) printf(" L2 Cache Size: %d bytes\n", L2CacheSize); printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); printf(" Warp size: %d\n", prop.warpSize); printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); printf(" Compute Mode:\n"); printf(" %s \n", computeMode[prop.computeMode]); } printf("\n"); printf("deviceQuery, CUDA Driver = CUDART"); printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); printf(", NumDevs = %d\n\n", count); fflush(stdout); } void cv::gpu::printShortCudaDeviceInfo(int device) { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f); printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount); printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); } fflush(stdout); } #endif // HAVE_CUDA //////////////////////////////// GpuMat /////////////////////////////// cv::gpu::GpuMat::GpuMat(const GpuMat& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { if (refcount) CV_XADD(refcount, 1); } cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert(step >= minstep); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert(step >= minstep); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange, Range colRange) { flags = m.flags; step = m.step; refcount = m.refcount; data = m.data; datastart = m.datastart; dataend = m.dataend; if (rowRange == Range::all()) rows = m.rows; else { CV_Assert(0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows); rows = rowRange.size(); data += step*rowRange.start; } if (colRange == Range::all()) cols = m.cols; else { CV_Assert(0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols); cols = colRange.size(); data += colRange.start*elemSize(); flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; } if (rows == 1) flags |= Mat::CONTINUOUS_FLAG; if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) : flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), data(m.data + roi.y*step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; data += roi.x * elemSize(); CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows); if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const Mat& m) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { upload(m); } GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m) { if (this != &m) { GpuMat temp(m); swap(temp); } return *this; } void cv::gpu::GpuMat::swap(GpuMat& b) { std::swap(flags, b.flags); std::swap(rows, b.rows); std::swap(cols, b.cols); std::swap(step, b.step); std::swap(data, b.data); std::swap(datastart, b.datastart); std::swap(dataend, b.dataend); std::swap(refcount, b.refcount); } void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const { size_t esz = elemSize(); ptrdiff_t delta1 = data - datastart; ptrdiff_t delta2 = dataend - datastart; CV_DbgAssert(step > 0); if (delta1 == 0) ofs.x = ofs.y = 0; else { ofs.y = static_cast(delta1 / step); ofs.x = static_cast((delta1 - step * ofs.y) / esz); CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz); } size_t minstep = (ofs.x + cols) * esz; wholeSize.height = std::max(static_cast((delta2 - minstep) / step + 1), ofs.y + rows); wholeSize.width = std::max(static_cast((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols); } GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright) { Size wholeSize; Point ofs; locateROI(wholeSize, ofs); size_t esz = elemSize(); int row1 = std::max(ofs.y - dtop, 0); int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); int col1 = std::max(ofs.x - dleft, 0); int col2 = std::min(ofs.x + cols + dright, wholeSize.width); data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz; rows = row2 - row1; cols = col2 - col1; if (esz * cols == step || rows == 1) flags |= Mat::CONTINUOUS_FLAG; else flags &= ~Mat::CONTINUOUS_FLAG; return *this; } GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const { GpuMat hdr = *this; int cn = channels(); if (new_cn == 0) new_cn = cn; int total_width = cols * cn; if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0) new_rows = rows * total_width / new_cn; if (new_rows != 0 && new_rows != rows) { int total_size = total_width * rows; if (!isContinuous()) CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed"); if ((unsigned)new_rows > (unsigned)total_size) CV_Error(CV_StsOutOfRange, "Bad new number of rows"); total_width = total_size / new_rows; if (total_width * new_rows != total_size) CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows"); hdr.rows = new_rows; hdr.step = total_width * elemSize1(); } int new_width = total_width / new_cn; if (new_width * new_cn != total_width) CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels"); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT); return hdr; } cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows) { m.download(*this); } namespace { class GpuFuncTable { public: virtual ~GpuFuncTable() {} virtual void copy(const Mat& src, GpuMat& dst) const = 0; virtual void copy(const GpuMat& src, Mat& dst) const = 0; virtual void copy(const GpuMat& src, GpuMat& dst) const = 0; virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0; virtual void convert(const GpuMat& src, GpuMat& dst) const = 0; virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0; virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0; virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0; virtual void free(void* devPtr) const = 0; }; } #ifndef HAVE_CUDA namespace { class EmptyFuncTable : public GpuFuncTable { public: void copy(const Mat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void copy(const GpuMat&, Mat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void copy(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void convert(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void convert(const GpuMat&, GpuMat&, double, double) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void setTo(GpuMat&, Scalar, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void mallocPitch(void**, size_t*, size_t, size_t) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); } void free(void*) const {} }; const GpuFuncTable* gpuFuncTable() { static EmptyFuncTable empty; return ∅ } } #else // HAVE_CUDA namespace cv { namespace gpu { namespace device { void copyToWithMask_gpu(DevMem2Db src, DevMem2Db dst, int elemSize1, int cn, DevMem2Db mask, bool colorMask, cudaStream_t stream); template void set_to_gpu(DevMem2Db mat, const T* scalar, int channels, cudaStream_t stream); template void set_to_gpu(DevMem2Db mat, const T* scalar, DevMem2Db mask, int channels, cudaStream_t stream); void convert_gpu(DevMem2Db src, int sdepth, DevMem2Db dst, int ddepth, double alpha, double beta, cudaStream_t stream); }}} namespace { template void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream) { Scalar_ sf = s; cv::gpu::device::set_to_gpu(src, sf.val, src.channels(), stream); } template void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { Scalar_ sf = s; cv::gpu::device::set_to_gpu(src, sf.val, mask, src.channels(), stream); } } namespace cv { namespace gpu { CV_EXPORTS void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0) { CV_Assert(src.size() == dst.size() && src.type() == dst.type()); CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); cv::gpu::device::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream); } CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst) { cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0); } CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0) { cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream); } CV_EXPORTS void setTo(GpuMat& src, Scalar s, cudaStream_t stream) { typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream); static const caller_t callers[] = { kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller }; callers[src.depth()](src, s, stream); } CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream); static const caller_t callers[] = { kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller }; callers[src.depth()](src, s, mask, stream); } CV_EXPORTS void setTo(GpuMat& src, Scalar s) { setTo(src, s, 0); } CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask) { setTo(src, s, mask, 0); } }} namespace { template struct NPPTypeTraits; template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; template<> struct NPPTypeTraits { typedef Npp8s npp_type; }; template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; template<> struct NPPTypeTraits { typedef Npp64f npp_type; }; ////////////////////////////////////////////////////////////////////////// // Convert template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, NPP_RND_NEAR) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // Set template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template<> struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // CopyMasked template struct NppCopyMaskedFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppCopyMasked { typedef typename NPPTypeTraits::npp_type src_t; static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template static inline bool isAligned(const T* ptr, size_t size) { return reinterpret_cast(ptr) % size == 0; } ////////////////////////////////////////////////////////////////////////// // CudaFuncTable class CudaFuncTable : public GpuFuncTable { public: void copy(const Mat& src, GpuMat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) ); } void copy(const GpuMat& src, Mat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) ); } void copy(const GpuMat& src, GpuMat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) ); } void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const { CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(src.size() == dst.size() && src.type() == dst.type()); CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); if (src.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream); static const func_t funcs[7][4] = { /* 8U */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }, /* 16U */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 16S */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 32S */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 32F */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask } }; const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask; func(src, dst, mask, 0); } void convert(const GpuMat& src, GpuMat& dst) const { typedef void (*func_t)(const GpuMat& src, GpuMat& dst); static const func_t funcs[7][7][4] = { { /* 8U -> 8U */ {0, 0, 0, 0}, /* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 8U -> 16U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 8U -> 16S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 8U -> 32F */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } }, { /* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 8S */ {0,0,0,0}, /* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} }, { /* 16U -> 8U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 16U */ {0,0,0,0}, /* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 32S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 32F */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } }, { /* 16S -> 8U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 16S */ {0,0,0,0}, /* 16S -> 32S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 32F */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } }, { /* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 32S */ {0,0,0,0}, /* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} }, { /* 32F -> 8U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 16U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 16S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 32F */ {0,0,0,0}, /* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} }, { /* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 64F */ {0,0,0,0} } }; CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(dst.depth() <= CV_64F); CV_Assert(src.size() == dst.size() && src.channels() == dst.channels()); if (src.depth() == CV_64F || dst.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16); if (!aligned) { cv::gpu::convertTo(src, dst); return; } const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1]; CV_DbgAssert(func != 0); func(src, dst); } void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const { CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(dst.depth() <= CV_64F); if (src.depth() == CV_64F || dst.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } cv::gpu::convertTo(src, dst, alpha, beta); } void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const { NppiSize sz; sz.width = m.cols; sz.height = m.rows; if (mask.empty()) { if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0) { cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) ); return; } if (m.depth() == CV_8U) { int cn = m.channels(); if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3])) { int val = saturate_cast(s[0]); cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) ); return; } } typedef void (*func_t)(GpuMat& src, Scalar s); static const func_t funcs[7][4] = { {NppSet::call, cv::gpu::setTo , cv::gpu::setTo , NppSet::call}, {NppSet::call, NppSet::call, NppSet::call, NppSet::call}, {NppSet::call, NppSet::call, cv::gpu::setTo , NppSet::call}, {NppSet::call, NppSet::call, cv::gpu::setTo , NppSet::call}, {NppSet::call, cv::gpu::setTo , cv::gpu::setTo , NppSet::call}, {NppSet::call, cv::gpu::setTo , cv::gpu::setTo , NppSet::call}, {cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo } }; CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); if (m.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } funcs[m.depth()][m.channels() - 1](m, s); } else { typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask); static const func_t funcs[7][4] = { {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo } }; CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); if (m.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } funcs[m.depth()][m.channels() - 1](m, s, mask); } } void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const { cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) ); } void free(void* devPtr) const { cudaFree(devPtr); } }; const GpuFuncTable* gpuFuncTable() { static CudaFuncTable funcTable; return &funcTable; } } #endif // HAVE_CUDA void cv::gpu::GpuMat::upload(const Mat& m) { CV_DbgAssert(!m.empty()); create(m.size(), m.type()); gpuFuncTable()->copy(m, *this); } void cv::gpu::GpuMat::download(Mat& m) const { CV_DbgAssert(!empty()); m.create(size(), type()); gpuFuncTable()->copy(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& m) const { CV_DbgAssert(!empty()); m.create(size(), type()); gpuFuncTable()->copy(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const { if (mask.empty()) copyTo(mat); else { mat.create(size(), type()); gpuFuncTable()->copyWithMask(*this, mat, mask); } } void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const { bool noScale = fabs(alpha - 1) < numeric_limits::epsilon() && fabs(beta) < numeric_limits::epsilon(); if (rtype < 0) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); int sdepth = depth(); int ddepth = CV_MAT_DEPTH(rtype); if (sdepth == ddepth && noScale) { copyTo(dst); return; } GpuMat temp; const GpuMat* psrc = this; if (sdepth != ddepth && psrc == &dst) { temp = *this; psrc = &temp; } dst.create(size(), rtype); if (noScale) gpuFuncTable()->convert(*psrc, dst); else gpuFuncTable()->convert(*psrc, dst, alpha, beta); } GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask) { CV_Assert(mask.empty() || mask.type() == CV_8UC1); CV_DbgAssert(!empty()); gpuFuncTable()->setTo(*this, s, mask); return *this; } void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) { _type &= TYPE_MASK; if (rows == _rows && cols == _cols && type() == _type && data) return; if (data) release(); CV_DbgAssert(_rows >= 0 && _cols >= 0); if (_rows > 0 && _cols > 0) { flags = Mat::MAGIC_VAL + _type; rows = _rows; cols = _cols; size_t esz = elemSize(); void* devPtr; gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows); // Single row must be continuous if (rows == 1) step = esz * cols; if (esz * cols == step) flags |= Mat::CONTINUOUS_FLAG; int64 _nettosize = static_cast(step) * rows; size_t nettosize = static_cast(_nettosize); datastart = data = static_cast(devPtr); dataend = data + nettosize; refcount = static_cast(fastMalloc(sizeof(*refcount))); *refcount = 1; } } void cv::gpu::GpuMat::release() { if (refcount && CV_XADD(refcount, -1) == 1) { fastFree(refcount); gpuFuncTable()->free(datastart); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } //////////////////////////////////////////////////////////////////////// // Error handling void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func) { int code = CV_GpuApiCallError; if (uncaught_exception()) { const char* errorStr = cvErrorStr(code); const char* function = func ? func : "unknown function"; cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line; cerr.flush(); } else cv::error( cv::Exception(code, error_string, func, file, line) ); }