/* This is sample from the OpenCV book. The copyright notice is below */ /* *************** License:************************** Oct. 3, 2008 Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you cited it: Learning OpenCV: Computer Vision with the OpenCV Library by Gary Bradski and Adrian Kaehler Published by O'Reilly Media, October 3, 2008 AVAILABLE AT: http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134 Or: http://oreilly.com/catalog/9780596516130/ ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 OTHER OPENCV SITES: * The source code is on sourceforge at: http://sourceforge.net/projects/opencvlibrary/ * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back): http://opencvlibrary.sourceforge.net/ * An active user group is at: http://tech.groups.yahoo.com/group/OpenCV/ * The minutes of weekly OpenCV development meetings are at: http://pr.willowgarage.com/wiki/OpenCV ************************************************** */ #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include #include #include #include #include #include #include #include using namespace cv; using namespace std; // // Given a list of chessboard images, the number of corners (nx, ny) // on the chessboards, and a flag: useCalibrated for calibrated (0) or // uncalibrated (1: use cvStereoCalibrate(), 2: compute fundamental // matrix separately) stereo. Calibrate the cameras and display the // rectified results along with the computed disparity images. // static void StereoCalib(const vector& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true) { if( imagelist.size() % 2 != 0 ) { cout << "Error: the image list contains odd (non-even) number of elements\n"; return; } bool displayCorners = true; const int maxScale = 2; const float squareSize = 1.f; // Set this to your actual square size // ARRAY AND VECTOR STORAGE: vector > imagePoints[2]; vector > objectPoints; Size imageSize; int i, j, k, nimages = (int)imagelist.size()/2; imagePoints[0].resize(nimages); imagePoints[1].resize(nimages); vector goodImageList; for( i = j = 0; i < nimages; i++ ) { for( k = 0; k < 2; k++ ) { const string& filename = imagelist[i*2+k]; Mat img = imread(filename, 0); if(img.empty()) break; if( imageSize == Size() ) imageSize = img.size(); else if( img.size() != imageSize ) { cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n"; break; } bool found = false; vector& corners = imagePoints[k][j]; for( int scale = 1; scale <= maxScale; scale++ ) { Mat timg; if( scale == 1 ) timg = img; else resize(img, timg, Size(), scale, scale); found = findChessboardCorners(timg, boardSize, corners, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE); if( found ) { if( scale > 1 ) { Mat cornersMat(corners); cornersMat *= 1./scale; } break; } } if( displayCorners ) { cout << filename << endl; Mat cimg, cimg1; cvtColor(img, cimg, CV_GRAY2BGR); drawChessboardCorners(cimg, boardSize, corners, found); double sf = 640./MAX(img.rows, img.cols); resize(cimg, cimg1, Size(), sf, sf); imshow("corners", cimg1); char c = (char)waitKey(500); if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit exit(-1); } else putchar('.'); if( !found ) break; cornerSubPix(img, corners, Size(11,11), Size(-1,-1), TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 30, 0.01)); } if( k == 2 ) { goodImageList.push_back(imagelist[i*2]); goodImageList.push_back(imagelist[i*2+1]); j++; } } cout << j << " pairs have been successfully detected.\n"; nimages = j; if( nimages < 2 ) { cout << "Error: too little pairs to run the calibration\n"; return; } imagePoints[0].resize(nimages); imagePoints[1].resize(nimages); objectPoints.resize(nimages); for( i = 0; i < nimages; i++ ) { for( j = 0; j < boardSize.height; j++ ) for( k = 0; k < boardSize.width; k++ ) objectPoints[i].push_back(Point3f(j*squareSize, k*squareSize, 0)); } cout << "Running stereo calibration ...\n"; Mat cameraMatrix[2], distCoeffs[2]; cameraMatrix[0] = Mat::eye(3, 3, CV_64F); cameraMatrix[1] = Mat::eye(3, 3, CV_64F); distCoeffs[0] = Mat::zeros(8, 1, CV_64F); distCoeffs[1] = Mat::zeros(8, 1, CV_64F); Mat R, T, E, F; stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1], cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], imageSize, R, T, E, F, TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5), CV_CALIB_FIX_ASPECT_RATIO + CV_CALIB_ZERO_TANGENT_DIST + CV_CALIB_SAME_FOCAL_LENGTH + CV_CALIB_FIX_K3); cout << "done\n"; // CALIBRATION QUALITY CHECK // because the output fundamental matrix implicitly // includes all the output information, // we can check the quality of calibration using the // epipolar geometry constraint: m2^t*F*m1=0 double err = 0; int npoints = 0; vector lines[2]; for( i = 0; i < nimages; i++ ) { int npt = (int)imagePoints[0][i].size(); Mat imgpt[2]; for( k = 0; k < 2; k++ ) { imgpt[k] = Mat(imagePoints[k][i]); undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]); computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]); } for( j = 0; j < npt; j++ ) { double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] + imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) + fabs(imagePoints[1][i][j].x*lines[0][j][0] + imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]); err += errij; } npoints += npt; } cout << "average reprojection err = " << err/npoints << endl; // save intrinsic parameters FileStorage fs("intrinsics.yml", CV_STORAGE_WRITE); if( fs.isOpened() ) { fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] << "M2" << cameraMatrix[1] << "D2" << distCoeffs[1]; fs.release(); } else cout << "Error: can not save the intrinsic parameters\n"; Mat R1, R2, P1, P2, Q; Rect roi1, roi2; stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], imageSize, R, T, R1, R2, P1, P2, Q, 1, imageSize, &roi1, &roi2); fs.open("extrinsics.yml", CV_STORAGE_WRITE); if( fs.isOpened() ) { fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q; fs.release(); } else cout << "Error: can not save the intrinsic parameters\n"; // OpenCV can handle left-right // or up-down camera arrangements bool isVerticalStereo = fabs(P2.at(1, 3)) > fabs(P2.at(0, 3)); //COMPUTE AND DISPLAY RECTIFICATION if( !showRectified ) return; Mat rmap[2][2]; // IF BY CALIBRATED (BOUGUET'S METHOD) if( !useCalibrated ) { // we already computed everything } //OR ELSE HARTLEY'S METHOD else // use intrinsic parameters of each camera, but // compute the rectification transformation directly // from the fundamental matrix { vector allimgpt[2]; for( k = 0; k < 2; k++ ) { for( i = 0; i < nimages; i++ ) std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k])); } F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0); Mat H1, H2; stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3); R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0]; R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1]; } //Precompute maps for cv::remap() initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]); initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]); /*for( i = 0; i < nimages; i++ ) { Mat img = }*/ } static bool readStringList( const string& filename, vector& l ) { l.resize(0); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; FileNode n = fs.getFirstTopLevelNode(); if( n.type() != FileNode::SEQ ) return false; FileNodeIterator it = n.begin(), it_end = n.end(); for( ; it != it_end; ++it ) l.push_back((string)*it); return true; } int print_help() { cout << "Usage:\n ./stereo_calib -w board_width -h board_height \n"; return 0; } int main(int argc, char** argv) { Size boardSize; string imagelistfn; for( int i = 1; i < argc; i++ ) { if( string(argv[i]) == "-w" ) sscanf(argv[++i], "%d", &boardSize.width); else if( string(argv[i]) == "-h" ) sscanf(argv[++i], "%d", &boardSize.height); else if( string(argv[i]) == "--help" ) return print_help(); else if( argv[i][0] == '-' ) { cout << "invalid option " << argv[i] << endl; return 0; } else imagelistfn = argv[i]; } if( imagelistfn == "" ) { imagelistfn = "stereo_calib.xml"; boardSize = Size(9, 6); } vector imagelist; bool ok = readStringList(imagelistfn, imagelist); if( !ok || imagelist.empty() || boardSize.width <= 0 || boardSize.height <= 0 ) return print_help(); StereoCalib(imagelist, boardSize); return 0; }