/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace { //////////////////////////////////////////////////////////////////////////////// // Add_Array PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Add_Array, Accuracy) { cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::add(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); cv::add(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, ALL_CHANNELS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Add_Scalar PARAM_TEST_CASE(Add_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Add_Scalar, Accuracy) { cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(0, 255); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::add(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); cv::add(mat, val, dst_gold, mask, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Subtract_Array PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Subtract_Array, Accuracy) { cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::subtract(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); cv::subtract(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, ALL_CHANNELS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Subtract_Scalar PARAM_TEST_CASE(Subtract_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Subtract_Scalar, Accuracy) { cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(0, 255); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); dst.setTo(cv::Scalar::all(0)); cv::gpu::subtract(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); cv::subtract(mat, val, dst_gold, mask, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Multiply_Array PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Multiply_Array, Accuracy) { cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); cv::Mat dst_gold; cv::multiply(mat1, mat2, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, 1.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, ALL_CHANNELS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Multiply_Array_Special PARAM_TEST_CASE(Multiply_Array_Special, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Multiply_Array_Special, Case_8UC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_8UC4); cv::Mat mat2 = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4b* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4b* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4b val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4b actual = dst_row[x]; cv::Vec4b gold; gold[0] = cv::saturate_cast(val1[0] * val2); gold[1] = cv::saturate_cast(val1[1] * val2); gold[2] = cv::saturate_cast(val1[2] * val2); gold[3] = cv::saturate_cast(val1[3] * val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } TEST_P(Multiply_Array_Special, Case_16SC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_16SC4); cv::Mat mat2 = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4s* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4s* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4s val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4s actual = dst_row[x]; cv::Vec4s gold; gold[0] = cv::saturate_cast(val1[0] * val2); gold[1] = cv::saturate_cast(val1[1] * val2); gold[2] = cv::saturate_cast(val1[2] * val2); gold[3] = cv::saturate_cast(val1[3] * val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array_Special, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Multiply_Scalar PARAM_TEST_CASE(Multiply_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Multiply_Scalar, Accuracy) { cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(0, 255); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); cv::gpu::multiply(loadMat(mat, useRoi), val, dst, scale, depth.second); cv::Mat dst_gold; cv::multiply(mat, val, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Array PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; int channels; bool useRoi; int stype; int dtype; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); stype = CV_MAKE_TYPE(depth.first, channels); dtype = CV_MAKE_TYPE(depth.second, channels); } }; TEST_P(Divide_Array, Accuracy) { cv::Mat mat1 = randomMat(size, stype); cv::Mat mat2 = randomMat(size, stype, 1.0, 255.0); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); cv::Mat dst_gold; cv::divide(mat1, mat2, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, 1.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, ALL_CHANNELS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Array_Special PARAM_TEST_CASE(Divide_Array_Special, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Divide_Array_Special, Case_8UC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_8UC4); cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4b* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4b* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4b val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4b actual = dst_row[x]; cv::Vec4b gold; gold[0] = cv::saturate_cast(val1[0] / val2); gold[1] = cv::saturate_cast(val1[1] / val2); gold[2] = cv::saturate_cast(val1[2] / val2); gold[3] = cv::saturate_cast(val1[3] / val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } TEST_P(Divide_Array_Special, Case_16SC4x_32FC1) { cv::Mat mat1 = randomMat(size, CV_16SC4); cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); cv::Mat h_dst(dst); for (int y = 0; y < h_dst.rows; ++y) { const cv::Vec4s* mat1_row = mat1.ptr(y); const float* mat2_row = mat2.ptr(y); const cv::Vec4s* dst_row = h_dst.ptr(y); for (int x = 0; x < h_dst.cols; ++x) { cv::Vec4s val1 = mat1_row[x]; float val2 = mat2_row[x]; cv::Vec4s actual = dst_row[x]; cv::Vec4s gold; gold[0] = cv::saturate_cast(val1[0] / val2); gold[1] = cv::saturate_cast(val1[1] / val2); gold[2] = cv::saturate_cast(val1[2] / val2); gold[3] = cv::saturate_cast(val1[3] / val2); ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); } } } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array_Special, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Scalar PARAM_TEST_CASE(Divide_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Divide_Scalar, Accuracy) { cv::Mat mat = randomMat(size, depth.first); cv::Scalar val = randomScalar(1.0, 255.0); double scale = randomDouble(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); cv::gpu::divide(loadMat(mat, useRoi), val, dst, scale, depth.second); cv::Mat dst_gold; cv::divide(mat, val, dst_gold, scale, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Divide_Scalar_Inv PARAM_TEST_CASE(Divide_Scalar_Inv, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; std::pair depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Divide_Scalar_Inv, Accuracy) { double scale = randomDouble(0.0, 255.0); cv::Mat mat = randomMat(size, depth.first, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); cv::gpu::divide(scale, loadMat(mat, useRoi), dst, depth.second); cv::Mat dst_gold; cv::divide(scale, mat, dst_gold, depth.second); EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar_Inv, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, DEPTH_PAIRS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // AbsDiff PARAM_TEST_CASE(AbsDiff, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(AbsDiff, Array) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::Mat dst_gold; cv::absdiff(src1, src2, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(AbsDiff, Scalar) { cv::Mat src = randomMat(size, depth); cv::Scalar val = randomScalar(0.0, 255.0); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::absdiff(loadMat(src, useRoi), val, dst); cv::Mat dst_gold; cv::absdiff(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5); } INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Abs PARAM_TEST_CASE(Abs, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Abs, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::abs(loadMat(src, useRoi), dst); cv::Mat dst_gold = cv::abs(src); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Abs, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Sqr PARAM_TEST_CASE(Sqr, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Sqr, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::sqr(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::multiply(src, src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Sqrt template void sqrtImpl(const cv::Mat& src, cv::Mat& dst) { dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) dst.at(y, x) = static_cast(std::sqrt(static_cast(src.at(y, x)))); } } void sqrtGold(const cv::Mat& src, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); const func_t funcs[] = { sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl }; funcs[src.depth()](src, dst); } PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Sqrt, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::sqrt(loadMat(src, useRoi), dst); cv::Mat dst_gold; sqrtGold(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Log template void logImpl(const cv::Mat& src, cv::Mat& dst) { dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) dst.at(y, x) = static_cast(std::log(static_cast(src.at(y, x)))); } } void logGold(const cv::Mat& src, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); const func_t funcs[] = { logImpl, logImpl, logImpl, logImpl, logImpl, logImpl }; funcs[src.depth()](src, dst); } PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Log, Accuracy) { cv::Mat src = randomMat(size, type, 1.0, 255.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::log(loadMat(src, useRoi), dst); cv::Mat dst_gold; logGold(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-6); } INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Exp PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Exp, Accuracy) { cv::Mat src = randomMat(size, type, 0.0, 10.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::exp(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::exp(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-2); } INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_32FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // compare CV_ENUM(CmpCode, cv::CMP_EQ, cv::CMP_GT, cv::CMP_GE, cv::CMP_LT, cv::CMP_LE, cv::CMP_NE) #define ALL_CMP_CODES testing::Values(CmpCode(cv::CMP_EQ), CmpCode(cv::CMP_NE), CmpCode(cv::CMP_GT), CmpCode(cv::CMP_GE), CmpCode(cv::CMP_LT), CmpCode(cv::CMP_LE)) PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int cmp_code; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); cmp_code = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Compare, Accuracy) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi); cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code); cv::Mat dst_gold; cv::compare(src1, src2, dst_gold, cmp_code); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, ALL_CMP_CODES, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Bitwise_Array PARAM_TEST_CASE(Bitwise_Array, cv::gpu::DeviceInfo, cv::Size, MatType) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; cv::Mat src1; cv::Mat src2; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); src1 = randomMat(size, type, 0.0, std::numeric_limits::max()); src2 = randomMat(size, type, 0.0, std::numeric_limits::max()); } }; TEST_P(Bitwise_Array, Not) { cv::gpu::GpuMat dst; cv::gpu::bitwise_not(loadMat(src1), dst); cv::Mat dst_gold = ~src1; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Array, Or) { cv::gpu::GpuMat dst; cv::gpu::bitwise_or(loadMat(src1), loadMat(src2), dst); cv::Mat dst_gold = src1 | src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Array, And) { cv::gpu::GpuMat dst; cv::gpu::bitwise_and(loadMat(src1), loadMat(src2), dst); cv::Mat dst_gold = src1 & src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Array, Xor) { cv::gpu::GpuMat dst; cv::gpu::bitwise_xor(loadMat(src1), loadMat(src2), dst); cv::Mat dst_gold = src1 ^ src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Array, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, TYPES(CV_8U, CV_32S, 1, 4))); ////////////////////////////////////////////////////////////////////////////// // Bitwise_Scalar PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; cv::Mat src; cv::Scalar val; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); src = randomMat(size, CV_MAKE_TYPE(depth, channels)); cv::Scalar_ ival = randomScalar(0.0, 255.0); val = ival; } }; TEST_P(Bitwise_Scalar, Or) { cv::gpu::GpuMat dst; cv::gpu::bitwise_or(loadMat(src), val, dst); cv::Mat dst_gold; cv::bitwise_or(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Scalar, And) { cv::gpu::GpuMat dst; cv::gpu::bitwise_and(loadMat(src), val, dst); cv::Mat dst_gold; cv::bitwise_and(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(Bitwise_Scalar, Xor) { cv::gpu::GpuMat dst; cv::gpu::bitwise_xor(loadMat(src), val, dst); cv::Mat dst_gold; cv::bitwise_xor(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), IMAGE_CHANNELS)); ////////////////////////////////////////////////////////////////////////////// // RShift template void rhiftImpl(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { const int cn = src.channels(); dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) { for (int c = 0; c < cn; ++c) dst.at(y, x * cn + c) = src.at(y, x * cn + c) >> val.val[c]; } } } void rhiftGold(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst); const func_t funcs[] = { rhiftImpl, rhiftImpl, rhiftImpl, rhiftImpl, rhiftImpl }; funcs[src.depth()](src, val, dst); } PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(RShift, Accuracy) { int type = CV_MAKE_TYPE(depth, channels); cv::Mat src = randomMat(size, type); cv::Scalar_ val = randomScalar(0.0, 8.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::rshift(loadMat(src, useRoi), val, dst); cv::Mat dst_gold; rhiftGold(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S)), IMAGE_CHANNELS, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // LShift template void lhiftImpl(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { const int cn = src.channels(); dst.create(src.size(), src.type()); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) { for (int c = 0; c < cn; ++c) dst.at(y, x * cn + c) = src.at(y, x * cn + c) << val.val[c]; } } } void lhiftGold(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) { typedef void (*func_t)(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst); const func_t funcs[] = { lhiftImpl, lhiftImpl, lhiftImpl, lhiftImpl, lhiftImpl }; funcs[src.depth()](src, val, dst); } PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(LShift, Accuracy) { int type = CV_MAKE_TYPE(depth, channels); cv::Mat src = randomMat(size, type); cv::Scalar_ val = randomScalar(0.0, 8.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::rshift(loadMat(src, useRoi), val, dst); cv::Mat dst_gold; rhiftGold(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, LShift, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), IMAGE_CHANNELS, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Min PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Min, Accuracy) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::Mat dst_gold = cv::min(src1, src2); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Max PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Max, Accuracy) { cv::Mat src1 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::Mat dst_gold = cv::max(src1, src2); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Pow PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Pow, Accuracy) { cv::Mat src = randomMat(size, depth, 0.0, 10.0); double power = randomDouble(2.0, 4.0); if (src.depth() < CV_32F) power = static_cast(power); cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::pow(loadMat(src, useRoi), power, dst); cv::Mat dst_gold; cv::pow(src, power, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1); } INSTANTIATE_TEST_CASE_P(GPU_Core, Pow, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // AddWeighted PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth1; int depth2; int dst_depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth1 = GET_PARAM(2); depth2 = GET_PARAM(3); dst_depth = GET_PARAM(4); useRoi = GET_PARAM(5); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(AddWeighted, Accuracy) { cv::Mat src1 = randomMat(size, depth1); cv::Mat src2 = randomMat(size, depth2); double alpha = randomDouble(-10.0, 10.0); double beta = randomDouble(-10.0, 10.0); double gamma = randomDouble(-10.0, 10.0); cv::gpu::GpuMat dst = createMat(size, dst_depth, useRoi); cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dst, dst_depth); cv::Mat dst_gold; cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dst_depth); EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-12); } INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, ALL_DEPTH, ALL_DEPTH, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // GEMM CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T); #define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T)) PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; int flags; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); flags = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(GEMM, Accuracy) { cv::Mat src1 = randomMat(size, type, -10.0, 10.0); cv::Mat src2 = randomMat(size, type, -10.0, 10.0); cv::Mat src3 = randomMat(size, type, -10.0, 10.0); double alpha = randomDouble(-10.0, 10.0); double beta = randomDouble(-10.0, 10.0); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags); cv::Mat dst_gold; cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags); EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10); } INSTANTIATE_TEST_CASE_P(GPU_Core, GEMM, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_32FC1), MatType(CV_32FC2), MatType(CV_64FC1), MatType(CV_64FC2)), ALL_GEMM_FLAGS, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Transpose PARAM_TEST_CASE(Transpose, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Transpose, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(cv::Size(size.height, size.width), type, useRoi); cv::gpu::transpose(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::transpose(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Transpose, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_16UC2), MatType(CV_16SC2), MatType(CV_32SC1), MatType(CV_32SC2), MatType(CV_64FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Flip enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) #define ALL_FLIP_CODES testing::Values(FlipCode(FLIP_BOTH), FlipCode(FLIP_X), FlipCode(FLIP_Y)) PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, cv::Size, MatType, FlipCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; int flip_code; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); flip_code = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Flip, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::flip(loadMat(src, useRoi), dst, flip_code); cv::Mat dst_gold; cv::flip(src, dst_gold, flip_code); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Flip, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32SC1), MatType(CV_32SC3), MatType(CV_32SC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), ALL_FLIP_CODES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // LUT PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(LUT, OneChannel) { cv::Mat src = randomMat(size, type); cv::Mat lut = randomMat(cv::Size(256, 1), CV_8UC1); cv::gpu::GpuMat dst = createMat(size, CV_MAKE_TYPE(lut.depth(), src.channels())); cv::gpu::LUT(loadMat(src, useRoi), lut, dst); cv::Mat dst_gold; cv::LUT(src, lut, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(LUT, MultiChannel) { cv::Mat src = randomMat(size, type); cv::Mat lut = randomMat(cv::Size(256, 1), CV_MAKE_TYPE(CV_8U, src.channels())); cv::gpu::GpuMat dst = createMat(size, CV_MAKE_TYPE(lut.depth(), src.channels()), useRoi); cv::gpu::LUT(loadMat(src, useRoi), lut, dst); cv::Mat dst_gold; cv::LUT(src, lut, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, LUT, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Magnitude PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Magnitude, NPP) { cv::Mat src = randomMat(size, CV_32FC2); cv::gpu::GpuMat dst = createMat(size, CV_32FC1, useRoi); cv::gpu::magnitude(loadMat(src, useRoi), dst); cv::Mat arr[2]; cv::split(src, arr); cv::Mat dst_gold; cv::magnitude(arr[0], arr[1], dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-4); } TEST_P(Magnitude, Sqr_NPP) { cv::Mat src = randomMat(size, CV_32FC2); cv::gpu::GpuMat dst = createMat(size, CV_32FC1, useRoi); cv::gpu::magnitudeSqr(loadMat(src, useRoi), dst); cv::Mat arr[2]; cv::split(src, arr); cv::Mat dst_gold; cv::magnitude(arr[0], arr[1], dst_gold); cv::multiply(dst_gold, dst_gold, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-1); } TEST_P(Magnitude, Accuracy) { cv::Mat x = randomMat(size, CV_32FC1); cv::Mat y = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_32FC1, useRoi); cv::gpu::magnitude(loadMat(x, useRoi), loadMat(y, useRoi), dst); cv::Mat dst_gold; cv::magnitude(x, y, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-4); } TEST_P(Magnitude, Sqr_Accuracy) { cv::Mat x = randomMat(size, CV_32FC1); cv::Mat y = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_32FC1, useRoi); cv::gpu::magnitudeSqr(loadMat(x, useRoi), loadMat(y, useRoi), dst); cv::Mat dst_gold; cv::magnitude(x, y, dst_gold); cv::multiply(dst_gold, dst_gold, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1e-1); } INSTANTIATE_TEST_CASE_P(GPU_Core, Magnitude, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Phase IMPLEMENT_PARAM_CLASS(AngleInDegrees, bool) PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool angleInDegrees; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); angleInDegrees = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Phase, Accuracy) { cv::Mat x = randomMat(size, CV_32FC1); cv::Mat y = randomMat(size, CV_32FC1); cv::gpu::GpuMat dst = createMat(size, CV_32FC1, useRoi); cv::gpu::phase(loadMat(x, useRoi), loadMat(y, useRoi), dst, angleInDegrees); cv::Mat dst_gold; cv::phase(x, y, dst_gold, angleInDegrees); EXPECT_MAT_NEAR(dst_gold, dst, angleInDegrees ? 1e-2 : 1e-3); } INSTANTIATE_TEST_CASE_P(GPU_Core, Phase, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(AngleInDegrees(false), AngleInDegrees(true)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // CartToPolar PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool angleInDegrees; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); angleInDegrees = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(CartToPolar, Accuracy) { cv::Mat x = randomMat(size, CV_32FC1); cv::Mat y = randomMat(size, CV_32FC1); cv::gpu::GpuMat mag = createMat(size, CV_32FC1, useRoi); cv::gpu::GpuMat angle = createMat(size, CV_32FC1, useRoi); cv::gpu::cartToPolar(loadMat(x, useRoi), loadMat(y, useRoi), mag, angle, angleInDegrees); cv::Mat mag_gold; cv::Mat angle_gold; cv::cartToPolar(x, y, mag_gold, angle_gold, angleInDegrees); EXPECT_MAT_NEAR(mag_gold, mag, 1e-4); EXPECT_MAT_NEAR(angle_gold, angle, angleInDegrees ? 1e-2 : 1e-3); } INSTANTIATE_TEST_CASE_P(GPU_Core, CartToPolar, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(AngleInDegrees(false), AngleInDegrees(true)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // polarToCart PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool angleInDegrees; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); angleInDegrees = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(PolarToCart, Accuracy) { cv::Mat magnitude = randomMat(size, CV_32FC1); cv::Mat angle = randomMat(size, CV_32FC1); cv::gpu::GpuMat x = createMat(size, CV_32FC1, useRoi); cv::gpu::GpuMat y = createMat(size, CV_32FC1, useRoi); cv::gpu::polarToCart(loadMat(magnitude, useRoi), loadMat(angle, useRoi), x, y, angleInDegrees); cv::Mat x_gold; cv::Mat y_gold; cv::polarToCart(magnitude, angle, x_gold, y_gold, angleInDegrees); EXPECT_MAT_NEAR(x_gold, x, 1e-4); EXPECT_MAT_NEAR(y_gold, y, 1e-4); } INSTANTIATE_TEST_CASE_P(GPU_Core, PolarToCart, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(AngleInDegrees(false), AngleInDegrees(true)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // MeanStdDev PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(MeanStdDev, Accuracy) { cv::Mat src = randomMat(size, CV_8UC1); cv::Scalar mean; cv::Scalar stddev; cv::gpu::meanStdDev(loadMat(src, useRoi), mean, stddev); cv::Scalar mean_gold; cv::Scalar stddev_gold; cv::meanStdDev(src, mean_gold, stddev_gold); EXPECT_SCALAR_NEAR(mean_gold, mean, 1e-5); EXPECT_SCALAR_NEAR(stddev_gold, stddev, 1e-5); } INSTANTIATE_TEST_CASE_P(GPU_Core, MeanStdDev, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Norm PARAM_TEST_CASE(Norm, cv::gpu::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int normCode; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); normCode = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(Norm, Accuracy) { cv::Mat src = randomMat(size, depth); double val = cv::gpu::norm(loadMat(src, useRoi), normCode); double val_gold = cv::norm(src, normCode); EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, Norm, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F)), testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // normDiff PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, cv::Size, NormCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int normCode; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); normCode = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(NormDiff, Accuracy) { cv::Mat src1 = randomMat(size, CV_8UC1); cv::Mat src2 = randomMat(size, CV_8UC1); double val = cv::gpu::norm(loadMat(src1, useRoi), loadMat(src2, useRoi), normCode); double val_gold = cv::norm(src1, src2, normCode); EXPECT_NEAR(val_gold, val, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Core, NormDiff, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Sum template cv::Scalar absSumImpl(const cv::Mat& src) { const int cn = src.channels(); cv::Scalar sum = cv::Scalar::all(0); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) { for (int c = 0; c < cn; ++c) sum[c] += std::abs(src.at(y, x * cn + c)); } } return sum; } cv::Scalar absSumGold(const cv::Mat& src) { typedef cv::Scalar (*func_t)(const cv::Mat& src); static const func_t funcs[] = { absSumImpl, absSumImpl, absSumImpl, absSumImpl, absSumImpl, absSumImpl, absSumImpl }; return funcs[src.depth()](src); } template cv::Scalar sqrSumImpl(const cv::Mat& src) { const int cn = src.channels(); cv::Scalar sum = cv::Scalar::all(0); for (int y = 0; y < src.rows; ++y) { for (int x = 0; x < src.cols; ++x) { for (int c = 0; c < cn; ++c) { const T val = src.at(y, x * cn + c); sum[c] += val * val; } } } return sum; } cv::Scalar sqrSumGold(const cv::Mat& src) { typedef cv::Scalar (*func_t)(const cv::Mat& src); static const func_t funcs[] = { sqrSumImpl, sqrSumImpl, sqrSumImpl, sqrSumImpl, sqrSumImpl, sqrSumImpl, sqrSumImpl }; return funcs[src.depth()](src); } PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; cv::Mat src; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); src = randomMat(size, type, -128.0, 128.0); } }; TEST_P(Sum, Simple) { cv::Scalar val = cv::gpu::sum(loadMat(src, useRoi)); cv::Scalar val_gold = cv::sum(src); EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5); } TEST_P(Sum, Abs) { cv::Scalar val = cv::gpu::absSum(loadMat(src, useRoi)); cv::Scalar val_gold = absSumGold(src); EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5); } TEST_P(Sum, Sqr) { cv::Scalar val = cv::gpu::sqrSum(loadMat(src, useRoi)); cv::Scalar val_gold = sqrSumGold(src); EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 10); } INSTANTIATE_TEST_CASE_P(GPU_Core, Sum, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, TYPES(CV_8U, CV_32F, 1, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // MinMax PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(MinMax, WithoutMask) { cv::Mat src = randomMat(size, depth); double minVal, maxVal; cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal); double minVal_gold, maxVal_gold; minMaxLocGold(src, &minVal_gold, &maxVal_gold); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); } TEST_P(MinMax, WithMask) { cv::Mat src = randomMat(size, depth); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); double minVal, maxVal; cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi)); double minVal_gold, maxVal_gold; minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0, mask); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); } TEST_P(MinMax, NullPtr) { cv::Mat src = randomMat(size, depth); cv::gpu::minMax(loadMat(src, useRoi), 0, 0); } INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // MinMaxLoc template void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc) { EXPECT_EQ(src.at(loc_gold.y, loc_gold.x), src.at(loc.y, loc.x)); } void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc) { typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc); static const func_t funcs[] = { expectEqualImpl, expectEqualImpl, expectEqualImpl, expectEqualImpl, expectEqualImpl, expectEqualImpl, expectEqualImpl }; funcs[src.depth()](src, loc_gold, loc); } PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(MinMaxLoc, WithoutMask) { cv::Mat src = randomMat(size, depth); double minVal, maxVal; cv::Point minLoc, maxLoc; cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc); double minVal_gold, maxVal_gold; cv::Point minLoc_gold, maxLoc_gold; minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); expectEqual(src, minLoc_gold, minLoc); expectEqual(src, maxLoc_gold, maxLoc); } TEST_P(MinMaxLoc, WithMask) { cv::Mat src = randomMat(size, depth); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); double minVal, maxVal; cv::Point minLoc, maxLoc; cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi)); double minVal_gold, maxVal_gold; cv::Point minLoc_gold, maxLoc_gold; minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); expectEqual(src, minLoc_gold, minLoc); expectEqual(src, maxLoc_gold, maxLoc); } TEST_P(MinMaxLoc, NullPtr) { cv::Mat src = randomMat(size, depth); cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, 0); } INSTANTIATE_TEST_CASE_P(GPU_Core, MinMaxLoc, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////// // CountNonZero PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(CountNonZero, Accuracy) { cv::Mat srcBase = randomMat(size, CV_8U, 0.0, 1.5); cv::Mat src; srcBase.convertTo(src, depth); int val = cv::gpu::countNonZero(loadMat(src, useRoi)); int val_gold = cv::countNonZero(src); ASSERT_EQ(val_gold, val); } INSTANTIATE_TEST_CASE_P(GPU_Core, CountNonZero, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // Reduce CV_ENUM(ReduceCode, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) #define ALL_REDUCE_CODES testing::Values(ReduceCode(CV_REDUCE_SUM), ReduceCode(CV_REDUCE_AVG), ReduceCode(CV_REDUCE_MAX), ReduceCode(CV_REDUCE_MIN)) PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, ReduceCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; int reduceOp; bool useRoi; int type; int dst_depth; int dst_type; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); reduceOp = GET_PARAM(4); useRoi = GET_PARAM(5); cv::gpu::setDevice(devInfo.deviceID()); type = CV_MAKE_TYPE(depth, channels); dst_depth = (reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN) ? depth : CV_32F; dst_type = CV_MAKE_TYPE(dst_depth, channels); } }; TEST_P(Reduce, Rows) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(cv::Size(src.cols, 1), dst_type, useRoi); cv::gpu::reduce(loadMat(src, useRoi), dst, 0, reduceOp, dst_depth); cv::Mat dst_gold; cv::reduce(src, dst_gold, 0, reduceOp, dst_depth); EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 1e-2); } TEST_P(Reduce, Cols) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(cv::Size(src.rows, 1), dst_type, useRoi); cv::gpu::reduce(loadMat(src, useRoi), dst, 1, reduceOp, dst_depth); cv::Mat dst_gold; cv::reduce(src, dst_gold, 1, reduceOp, dst_depth); dst_gold.cols = dst_gold.rows; dst_gold.rows = 1; dst_gold.step = dst_gold.cols * dst_gold.elemSize(); EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 1e-2); } INSTANTIATE_TEST_CASE_P(GPU_Core, Reduce, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32F)), ALL_CHANNELS, ALL_REDUCE_CODES, WHOLE_SUBMAT)); } // namespace