import numpy as np import cv2, cv import common def detect(img, cascade): min_size = (20, 20) haar_scale = 1.1 min_neighbors = 3 haar_flags = 0 rects = cascade.detectMultiScale(img, haar_scale, min_neighbors, haar_flags, min_size) if len(rects) == 0: return rects[:,2:] += rects[:,:2] return rects def detect_turned(img, cascade): img_t = cv2.transpose(img) img_cw = cv2.flip(img_t, 1) img_ccw = cv2.flip(img_t, 0) r = detect(img, cascade) r_cw = detect(img_cw, cascade) r_ccw = detect(img_ccw, cascade) h, w = img.shape[:2] if r_cw is not None: r_cw[:,[0, 2]] = h - r_cw[:,[0, 2]] - 1 r_cw = r_cw[:,[1,0,3,2]] if r_ccw is not None: r_ccw[:,[1, 3]] = w - r_ccw[:,[1, 3]] - 1 r_ccw = r_ccw[:,[1,0,3,2]] rects = np.vstack( [a for a in [r, r_cw, r_ccw] if a is not None] ) return rects def process_image(fn, cascade): pass if __name__ == '__main__': import sys import getopt args, img_mask = getopt.getopt(sys.argv[1:], '', ['cascade=']) args = dict(args) cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml") cascade = cv2.CascadeClassifier(cascade_fn) img = cv2.imread('test.jpg') h, w = img.shape[:2] r = 512.0 / max(h, w) small = cv2.resize(img, (int(w*r), int(h*r)), interpolation=cv2.INTER_AREA) rects = detect_turned(small, cascade) print rects for x1, y1, x2, y2 in rects: cv2.rectangle(small, (x1, y1), (x2, y2), (0, 255, 0)) cv2.circle(small, (x1, y1), 2, (0, 0, 255), -1) cv2.imshow('img', small) cv2.waitKey() ''' img = cv2.imread('test.jpg') h, w = img.shape[:2] r = 512.0 / max(h, w) small = cv2.resize(img, (w*r, h*r), interpolation=cv2.INTER_AREA) cv2.imshow('img', small) cv2.waitKey() '''