#pragma warning( disable : 4201 4408 4127 4100) #include "cvconfig.h" #include #include #include "opencv2/opencv.hpp" #include "opencv2/gpu/gpu.hpp" #ifdef HAVE_CUDA #include "NCVHaarObjectDetection.hpp" #endif using namespace std; using namespace cv; #if !defined(HAVE_CUDA) int main( int argc, const char** argv ) { cout << "Please compile the library with CUDA support" << endl; return -1; } #else const Size2i preferredVideoFrameSize(640, 480); const string wndTitle = "NVIDIA Computer Vision :: Haar Classifiers Cascade"; void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const ostringstream &ss) { int fontFace = FONT_HERSHEY_DUPLEX; double fontScale = 0.8; int fontThickness = 2; Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0); Point org; org.x = 1; org.y = 3 * fontSize.height * (lineOffsY + 1) / 2; putText(img, ss.str(), org, fontFace, fontScale, CV_RGB(0,0,0), 5*fontThickness/2, 16); putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness, 16); } void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps) { Scalar fontColorRed = CV_RGB(255,0,0); Scalar fontColorNV = CV_RGB(118,185,0); ostringstream ss; ss << "FPS = " << setprecision(1) << fixed << fps; matPrint(canvas, 0, fontColorRed, ss); ss.str(""); ss << "[" << canvas.cols << "x" << canvas.rows << "], " << (bGpu ? "GPU, " : "CPU, ") << (bLargestFace ? "OneFace, " : "MultiFace, ") << (bFilter ? "Filter:ON" : "Filter:OFF"); matPrint(canvas, 1, fontColorRed, ss); if (bHelp) { matPrint(canvas, 2, fontColorNV, ostringstream("Space - switch GPU / CPU")); matPrint(canvas, 3, fontColorNV, ostringstream("M - switch OneFace / MultiFace")); matPrint(canvas, 4, fontColorNV, ostringstream("F - toggle rectangles Filter")); matPrint(canvas, 5, fontColorNV, ostringstream("H - toggle hotkeys help")); } else { matPrint(canvas, 2, fontColorNV, ostringstream("H - toggle hotkeys help")); } } NCVStatus process(Mat *srcdst, Ncv32u width, Ncv32u height, NcvBool bFilterRects, NcvBool bLargestFace, HaarClassifierCascadeDescriptor &haar, NCVVector &d_haarStages, NCVVector &d_haarNodes, NCVVector &d_haarFeatures, NCVVector &h_haarStages, INCVMemAllocator &gpuAllocator, INCVMemAllocator &cpuAllocator, cudaDeviceProp &devProp) { ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR); NCVStatus ncvStat; NCV_SET_SKIP_COND(gpuAllocator.isCounting()); NCVMatrixAlloc d_src(gpuAllocator, width, height); ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVMatrixAlloc h_src(cpuAllocator, width, height); ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc d_rects(gpuAllocator, 100); ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCV_SKIP_COND_BEGIN for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++) { memcpy(h_src.ptr() + i * h_src.stride(), srcdst->ptr(i), srcdst->cols); } ncvStat = h_src.copySolid(d_src, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); NCV_SKIP_COND_END NcvSize32u roi; roi.width = d_src.width(); roi.height = d_src.height(); Ncv32u numDetections; ncvStat = ncvDetectObjectsMultiScale_device( d_src, roi, d_rects, numDetections, haar, h_haarStages, d_haarStages, d_haarNodes, d_haarFeatures, haar.ClassifierSize, (bFilterRects || bLargestFace) ? 4 : 0, 1.2f, 1, (bLargestFace ? NCVPipeObjDet_FindLargestObject : 0) | NCVPipeObjDet_VisualizeInPlace, gpuAllocator, cpuAllocator, devProp, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); NCV_SKIP_COND_BEGIN ncvStat = d_src.copySolid(h_src, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++) { memcpy(srcdst->ptr(i), h_src.ptr() + i * h_src.stride(), srcdst->cols); } NCV_SKIP_COND_END return NCV_SUCCESS; } int main(int argc, const char** argv) { cout << "OpenCV / NVIDIA Computer Vision" << endl; cout << "Face Detection in video and live feed" << endl; cout << "Syntax: exename " << endl; cout << "=========================================" << endl; ncvAssertPrintReturn(cv::gpu::getCudaEnabledDeviceCount() != 0, "No GPU found or the library is compiled without GPU support", -1); ncvAssertPrintReturn(argc == 3, "Invalid number of arguments", -1); string cascadeName = argv[1]; string inputName = argv[2]; NCVStatus ncvStat; NcvBool bQuit = false; VideoCapture capture; Size2i frameSize; //open content source Mat image = imread(inputName); Mat frame; if (!image.empty()) { frameSize.width = image.cols; frameSize.height = image.rows; } else { if (!capture.open(inputName)) { int camid = -1; istringstream ss(inputName); int x = 0; ss >> x; ncvAssertPrintReturn(capture.open(camid) != 0, "Can't open source", -1); } capture >> frame; ncvAssertPrintReturn(!frame.empty(), "Empty video source", -1); frameSize.width = frame.cols; frameSize.height = frame.rows; } NcvBool bUseGPU = true; NcvBool bLargestObject = false; NcvBool bFilterRects = true; NcvBool bHelpScreen = false; CascadeClassifier classifierOpenCV; ncvAssertPrintReturn(classifierOpenCV.load(cascadeName) != 0, "Error (in OpenCV) opening classifier", -1); int devId; ncvAssertCUDAReturn(cudaGetDevice(&devId), -1); cudaDeviceProp devProp; ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1); cout << "Using GPU: " << devId << "(" << devProp.name << "), arch=" << devProp.major << "." << devProp.minor << endl; //============================================================================== // // Load the classifier from file (assuming its size is about 1 mb) // using a simple allocator // //============================================================================== NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment); ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1); NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment); ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1); Ncv32u haarNumStages, haarNumNodes, haarNumFeatures; ncvStat = ncvHaarGetClassifierSize(cascadeName, haarNumStages, haarNumNodes, haarNumFeatures); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1); NCVVectorAlloc h_haarStages(cpuCascadeAllocator, haarNumStages); ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1); NCVVectorAlloc h_haarNodes(cpuCascadeAllocator, haarNumNodes); ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1); NCVVectorAlloc h_haarFeatures(cpuCascadeAllocator, haarNumFeatures); ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1); HaarClassifierCascadeDescriptor haar; ncvStat = ncvHaarLoadFromFile_host(cascadeName, haar, h_haarStages, h_haarNodes, h_haarFeatures); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1); NCVVectorAlloc d_haarStages(gpuCascadeAllocator, haarNumStages); ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1); NCVVectorAlloc d_haarNodes(gpuCascadeAllocator, haarNumNodes); ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1); NCVVectorAlloc d_haarFeatures(gpuCascadeAllocator, haarNumFeatures); ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1); ncvStat = h_haarStages.copySolid(d_haarStages, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1); ncvStat = h_haarNodes.copySolid(d_haarNodes, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1); ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1); //============================================================================== // // Calculate memory requirements and create real allocators // //============================================================================== NCVMemStackAllocator gpuCounter(devProp.textureAlignment); ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1); NCVMemStackAllocator cpuCounter(devProp.textureAlignment); ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1); ncvStat = process(NULL, frameSize.width, frameSize.height, false, false, haar, d_haarStages, d_haarNodes, d_haarFeatures, h_haarStages, gpuCounter, cpuCounter, devProp); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1); NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment); ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1); NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment); ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1); printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height); //============================================================================== // // Main processing loop // //============================================================================== namedWindow(wndTitle, 1); Mat gray, frameDisp; do { Mat gray; cvtColor((image.empty() ? frame : image), gray, CV_BGR2GRAY); // // process // NcvSize32u minSize = haar.ClassifierSize; if (bLargestObject) { Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width; Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height; Ncv32u ratioSmallest = min(ratioX, ratioY); ratioSmallest = max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1); minSize.width *= ratioSmallest; minSize.height *= ratioSmallest; } Ncv32f avgTime; NcvTimer timer = ncvStartTimer(); if (bUseGPU) { ncvStat = process(&gray, frameSize.width, frameSize.height, bFilterRects, bLargestObject, haar, d_haarStages, d_haarNodes, d_haarFeatures, h_haarStages, gpuAllocator, cpuAllocator, devProp); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1); } else { vector rectsOpenCV; classifierOpenCV.detectMultiScale( gray, rectsOpenCV, 1.2f, bFilterRects ? 4 : 0, (bLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE, Size(minSize.width, minSize.height)); for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt) rectangle(gray, rectsOpenCV[rt], Scalar(255)); } avgTime = (Ncv32f)ncvEndQueryTimerMs(timer); cvtColor(gray, frameDisp, CV_GRAY2BGR); displayState(frameDisp, bHelpScreen, bUseGPU, bLargestObject, bFilterRects, 1000.0f / avgTime); imshow(wndTitle, frameDisp); //handle input switch (cvWaitKey(3)) { case ' ': bUseGPU = !bUseGPU; break; case 'm': case 'M': bLargestObject = !bLargestObject; break; case 'f': case 'F': bFilterRects = !bFilterRects; break; case 'h': case 'H': bHelpScreen = !bHelpScreen; break; case 27: bQuit = true; break; } // For camera and video file, capture the next image if (capture.isOpened()) { capture >> frame; if (frame.empty()) { break; } } } while (!bQuit); cvDestroyWindow(wndTitle.c_str()); return 0; } #endif //!defined(HAVE_CUDA)