/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" CV_IMPL void cvCanny( const void* srcarr, void* dstarr, double low_thresh, double high_thresh, int aperture_size ) { cv::Ptr dx, dy; cv::AutoBuffer buffer; std::vector stack; uchar **stack_top = 0, **stack_bottom = 0; CvMat srcstub, *src = cvGetMat( srcarr, &srcstub ); CvMat dststub, *dst = cvGetMat( dstarr, &dststub ); CvSize size; int flags = aperture_size; int low, high; int* mag_buf[3]; uchar* map; ptrdiff_t mapstep; int maxsize; int i, j; CvMat mag_row; if( CV_MAT_TYPE( src->type ) != CV_8UC1 || CV_MAT_TYPE( dst->type ) != CV_8UC1 ) CV_Error( CV_StsUnsupportedFormat, "" ); if( !CV_ARE_SIZES_EQ( src, dst )) CV_Error( CV_StsUnmatchedSizes, "" ); if( low_thresh > high_thresh ) { double t; CV_SWAP( low_thresh, high_thresh, t ); } aperture_size &= INT_MAX; if( (aperture_size & 1) == 0 || aperture_size < 3 || aperture_size > 7 ) CV_Error( CV_StsBadFlag, "" ); size = cvGetMatSize( src ); dx = cvCreateMat( size.height, size.width, CV_16SC1 ); dy = cvCreateMat( size.height, size.width, CV_16SC1 ); cvSobel( src, dx, 1, 0, aperture_size ); cvSobel( src, dy, 0, 1, aperture_size ); /*if( icvCannyGetSize_p && icvCanny_16s8u_C1R_p && !(flags & CV_CANNY_L2_GRADIENT) ) { int buf_size= 0; IPPI_CALL( icvCannyGetSize_p( size, &buf_size )); CV_CALL( buffer = cvAlloc( buf_size )); IPPI_CALL( icvCanny_16s8u_C1R_p( (short*)dx->data.ptr, dx->step, (short*)dy->data.ptr, dy->step, dst->data.ptr, dst->step, size, (float)low_thresh, (float)high_thresh, buffer )); EXIT; }*/ if( flags & CV_CANNY_L2_GRADIENT ) { Cv32suf ul, uh; ul.f = (float)low_thresh; uh.f = (float)high_thresh; low = ul.i; high = uh.i; } else { low = cvFloor( low_thresh ); high = cvFloor( high_thresh ); } buffer.allocate( (size.width+2)*(size.height+2) + (size.width+2)*3*sizeof(int) ); mag_buf[0] = (int*)(char*)buffer; mag_buf[1] = mag_buf[0] + size.width + 2; mag_buf[2] = mag_buf[1] + size.width + 2; map = (uchar*)(mag_buf[2] + size.width + 2); mapstep = size.width + 2; maxsize = MAX( 1 << 10, size.width*size.height/10 ); stack.resize( maxsize ); stack_top = stack_bottom = &stack[0]; memset( mag_buf[0], 0, (size.width+2)*sizeof(int) ); memset( map, 1, mapstep ); memset( map + mapstep*(size.height + 1), 1, mapstep ); /* sector numbers (Top-Left Origin) 1 2 3 * * * * * * 0*******0 * * * * * * 3 2 1 */ #define CANNY_PUSH(d) *(d) = (uchar)2, *stack_top++ = (d) #define CANNY_POP(d) (d) = *--stack_top mag_row = cvMat( 1, size.width, CV_32F ); // calculate magnitude and angle of gradient, perform non-maxima supression. // fill the map with one of the following values: // 0 - the pixel might belong to an edge // 1 - the pixel can not belong to an edge // 2 - the pixel does belong to an edge for( i = 0; i <= size.height; i++ ) { int* _mag = mag_buf[(i > 0) + 1] + 1; float* _magf = (float*)_mag; const short* _dx = (short*)(dx->data.ptr + dx->step*i); const short* _dy = (short*)(dy->data.ptr + dy->step*i); uchar* _map; int x, y; ptrdiff_t magstep1, magstep2; int prev_flag = 0; if( i < size.height ) { _mag[-1] = _mag[size.width] = 0; if( !(flags & CV_CANNY_L2_GRADIENT) ) for( j = 0; j < size.width; j++ ) _mag[j] = abs(_dx[j]) + abs(_dy[j]); /*else if( icvFilterSobelVert_8u16s_C1R_p != 0 ) // check for IPP { // use vectorized sqrt mag_row.data.fl = _magf; for( j = 0; j < size.width; j++ ) { x = _dx[j]; y = _dy[j]; _magf[j] = (float)((double)x*x + (double)y*y); } cvPow( &mag_row, &mag_row, 0.5 ); }*/ else { for( j = 0; j < size.width; j++ ) { x = _dx[j]; y = _dy[j]; _magf[j] = (float)std::sqrt((double)x*x + (double)y*y); } } } else memset( _mag-1, 0, (size.width + 2)*sizeof(int) ); // at the very beginning we do not have a complete ring // buffer of 3 magnitude rows for non-maxima suppression if( i == 0 ) continue; _map = map + mapstep*i + 1; _map[-1] = _map[size.width] = 1; _mag = mag_buf[1] + 1; // take the central row _dx = (short*)(dx->data.ptr + dx->step*(i-1)); _dy = (short*)(dy->data.ptr + dy->step*(i-1)); magstep1 = mag_buf[2] - mag_buf[1]; magstep2 = mag_buf[0] - mag_buf[1]; if( (stack_top - stack_bottom) + size.width > maxsize ) { int sz = (int)(stack_top - stack_bottom); maxsize = MAX( maxsize * 3/2, maxsize + 8 ); stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } for( j = 0; j < size.width; j++ ) { #define CANNY_SHIFT 15 #define TG22 (int)(0.4142135623730950488016887242097*(1< low ) { int tg22x = x * TG22; int tg67x = tg22x + ((x + x) << CANNY_SHIFT); y <<= CANNY_SHIFT; if( y < tg22x ) { if( m > _mag[j-1] && m >= _mag[j+1] ) { if( m > high && !prev_flag && _map[j-mapstep] != 2 ) { CANNY_PUSH( _map + j ); prev_flag = 1; } else _map[j] = (uchar)0; continue; } } else if( y > tg67x ) { if( m > _mag[j+magstep2] && m >= _mag[j+magstep1] ) { if( m > high && !prev_flag && _map[j-mapstep] != 2 ) { CANNY_PUSH( _map + j ); prev_flag = 1; } else _map[j] = (uchar)0; continue; } } else { s = s < 0 ? -1 : 1; if( m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s] ) { if( m > high && !prev_flag && _map[j-mapstep] != 2 ) { CANNY_PUSH( _map + j ); prev_flag = 1; } else _map[j] = (uchar)0; continue; } } } prev_flag = 0; _map[j] = (uchar)1; } // scroll the ring buffer _mag = mag_buf[0]; mag_buf[0] = mag_buf[1]; mag_buf[1] = mag_buf[2]; mag_buf[2] = _mag; } // now track the edges (hysteresis thresholding) while( stack_top > stack_bottom ) { uchar* m; if( (stack_top - stack_bottom) + 8 > maxsize ) { int sz = (int)(stack_top - stack_bottom); maxsize = MAX( maxsize * 3/2, maxsize + 8 ); stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } CANNY_POP(m); if( !m[-1] ) CANNY_PUSH( m - 1 ); if( !m[1] ) CANNY_PUSH( m + 1 ); if( !m[-mapstep-1] ) CANNY_PUSH( m - mapstep - 1 ); if( !m[-mapstep] ) CANNY_PUSH( m - mapstep ); if( !m[-mapstep+1] ) CANNY_PUSH( m - mapstep + 1 ); if( !m[mapstep-1] ) CANNY_PUSH( m + mapstep - 1 ); if( !m[mapstep] ) CANNY_PUSH( m + mapstep ); if( !m[mapstep+1] ) CANNY_PUSH( m + mapstep + 1 ); } // the final pass, form the final image for( i = 0; i < size.height; i++ ) { const uchar* _map = map + mapstep*(i+1) + 1; uchar* _dst = dst->data.ptr + dst->step*i; for( j = 0; j < size.width; j++ ) _dst[j] = (uchar)-(_map[j] >> 1); } } void cv::Canny( const Mat& image, Mat& edges, double threshold1, double threshold2, int apertureSize, bool L2gradient ) { Mat src = image; edges.create(src.size(), CV_8U); CvMat _src = src, _dst = edges; cvCanny( &_src, &_dst, threshold1, threshold2, apertureSize + (L2gradient ? CV_CANNY_L2_GRADIENT : 0)); } /* End of file. */