/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Zero Lin, Zero.Lin@amd.com // Zhang Ying, zhangying913@gmail.com // Yao Wang, bitwangyaoyao@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../test_precomp.hpp" #include "cvconfig.h" #include "opencv2/ts/ocl_test.hpp" #ifdef HAVE_OPENCL namespace cvtest { namespace ocl { PARAM_TEST_CASE(BruteForceMatcher, int, int) { int distType; int dim; int queryDescCount; int countFactor; Mat query, train; UMat uquery, utrain; virtual void SetUp() { distType = GET_PARAM(0); dim = GET_PARAM(1); queryDescCount = 300; // must be even number because we split train data in some cases in two countFactor = 4; // do not change it cv::Mat queryBuf, trainBuf; // Generate query descriptors randomly. // Descriptor vector elements are integer values. queryBuf.create(queryDescCount, dim, CV_32SC1); rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3)); queryBuf.convertTo(queryBuf, CV_32FC1); // Generate train decriptors as follows: // copy each query descriptor to train set countFactor times // and perturb some one element of the copied descriptors in // in ascending order. General boundaries of the perturbation // are (0.f, 1.f). trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1); float step = 1.f / countFactor; for (int qIdx = 0; qIdx < queryDescCount; qIdx++) { cv::Mat queryDescriptor = queryBuf.row(qIdx); for (int c = 0; c < countFactor; c++) { int tIdx = qIdx * countFactor + c; cv::Mat trainDescriptor = trainBuf.row(tIdx); queryDescriptor.copyTo(trainDescriptor); int elem = rng(dim); float diff = rng.uniform(step * c, step * (c + 1)); trainDescriptor.at(0, elem) += diff; } } queryBuf.convertTo(query, CV_32F); trainBuf.convertTo(train, CV_32F); query.copyTo(uquery); train.copyTo(utrain); } }; #ifdef ANDROID OCL_TEST_P(BruteForceMatcher, DISABLED_Match_Single) #else OCL_TEST_P(BruteForceMatcher, Match_Single) #endif { BFMatcher matcher(distType); std::vector matches; matcher.match(uquery, utrain, matches); ASSERT_EQ(static_cast(queryDescCount), matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { cv::DMatch match = matches[i]; if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) badCount++; } ASSERT_EQ(0, badCount); } #ifdef ANDROID OCL_TEST_P(BruteForceMatcher, DISABLED_KnnMatch_2_Single) #else OCL_TEST_P(BruteForceMatcher, KnnMatch_2_Single) #endif { const int knn = 2; BFMatcher matcher(distType); std::vector< std::vector > matches; matcher.knnMatch(uquery, utrain, matches, knn); ASSERT_EQ(static_cast(queryDescCount), matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { if ((int)matches[i].size() != knn) badCount++; else { int localBadCount = 0; for (int k = 0; k < knn; k++) { cv::DMatch match = matches[i][k]; if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) localBadCount++; } badCount += localBadCount > 0 ? 1 : 0; } } ASSERT_EQ(0, badCount); } #ifdef ANDROID OCL_TEST_P(BruteForceMatcher, DISABLED_RadiusMatch_Single) #else OCL_TEST_P(BruteForceMatcher, RadiusMatch_Single) #endif { float radius = 1.f / countFactor; BFMatcher matcher(distType); std::vector< std::vector > matches; matcher.radiusMatch(uquery, utrain, matches, radius); ASSERT_EQ(static_cast(queryDescCount), matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { if ((int)matches[i].size() != 1) { badCount++; } else { cv::DMatch match = matches[i][0]; if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) badCount++; } } ASSERT_EQ(0, badCount); } OCL_INSTANTIATE_TEST_CASE_P(Matcher, BruteForceMatcher, Combine( Values((int)NORM_L1, (int)NORM_L2), Values(57, 64, 83, 128, 179, 256, 304) ) ); }//ocl }//cvtest #endif //HAVE_OPENCL