#include "opencv2/core/core_c.h" #include "opencv2/ml/ml.hpp" #include #include /* */ void help() { printf("\nThe sample demonstrates how to train Random Trees classifier\n" "(or Boosting classifier, or MLP, or Knearest, or Nbayes, or Support Vector Machines - see main()) using the provided dataset.\n" "\n" "We use the sample database letter-recognition.data\n" "from UCI Repository, here is the link:\n" "\n" "Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n" "UCI Repository of machine learning databases\n" "[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n" "Irvine, CA: University of California, Department of Information and Computer Science.\n" "\n" "The dataset consists of 20000 feature vectors along with the\n" "responses - capital latin letters A..Z.\n" "The first 16000 (10000 for boosting)) samples are used for training\n" "and the remaining 4000 (10000 for boosting) - to test the classifier.\n" "======================================================\n"); printf("\nThis is letter recognition sample.\n" "The usage: letter_recog [-data ] \\\n" " [-save ] \\\n" " [-load ] \\\n" " [-boost|-mlp|-knearest|-nbayes|-svm] # to use boost/mlp/knearest/SVM classifier instead of default Random Trees\n" ); } // This function reads data and responses from the file static int read_num_class_data( const char* filename, int var_count, CvMat** data, CvMat** responses ) { const int M = 1024; FILE* f = fopen( filename, "rt" ); CvMemStorage* storage; CvSeq* seq; char buf[M+2]; float* el_ptr; CvSeqReader reader; int i, j; if( !f ) return 0; el_ptr = new float[var_count+1]; storage = cvCreateMemStorage(); seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage ); for(;;) { char* ptr; if( !fgets( buf, M, f ) || !strchr( buf, ',' ) ) break; el_ptr[0] = buf[0]; ptr = buf+2; for( i = 1; i <= var_count; i++ ) { int n = 0; sscanf( ptr, "%f%n", el_ptr + i, &n ); ptr += n + 1; } if( i <= var_count ) break; cvSeqPush( seq, el_ptr ); } fclose(f); *data = cvCreateMat( seq->total, var_count, CV_32F ); *responses = cvCreateMat( seq->total, 1, CV_32F ); cvStartReadSeq( seq, &reader ); for( i = 0; i < seq->total; i++ ) { const float* sdata = (float*)reader.ptr + 1; float* ddata = data[0]->data.fl + var_count*i; float* dr = responses[0]->data.fl + i; for( j = 0; j < var_count; j++ ) ddata[j] = sdata[j]; *dr = sdata[-1]; CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } cvReleaseMemStorage( &storage ); delete el_ptr; return 1; } static int build_rtrees_classifier( char* data_filename, char* filename_to_save, char* filename_to_load ) { CvMat* data = 0; CvMat* responses = 0; CvMat* var_type = 0; CvMat* sample_idx = 0; int ok = read_num_class_data( data_filename, 16, &data, &responses ); int nsamples_all = 0, ntrain_samples = 0; int i = 0; double train_hr = 0, test_hr = 0; CvRTrees forest; CvMat* var_importance = 0; if( !ok ) { printf( "Could not read the database %s\n", data_filename ); return -1; } printf( "The database %s is loaded.\n", data_filename ); nsamples_all = data->rows; ntrain_samples = (int)(nsamples_all*0.8); // Create or load Random Trees classifier if( filename_to_load ) { // load classifier from the specified file forest.load( filename_to_load ); ntrain_samples = 0; if( forest.get_tree_count() == 0 ) { printf( "Could not read the classifier %s\n", filename_to_load ); return -1; } printf( "The classifier %s is loaded.\n", data_filename ); } else { // create classifier by using and printf( "Training the classifier ...\n"); // 1. create type mask var_type = cvCreateMat( data->cols + 1, 1, CV_8U ); cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) ); cvSetReal1D( var_type, data->cols, CV_VAR_CATEGORICAL ); // 2. create sample_idx sample_idx = cvCreateMat( 1, nsamples_all, CV_8UC1 ); { CvMat mat; cvGetCols( sample_idx, &mat, 0, ntrain_samples ); cvSet( &mat, cvRealScalar(1) ); cvGetCols( sample_idx, &mat, ntrain_samples, nsamples_all ); cvSetZero( &mat ); } // 3. train classifier forest.train( data, CV_ROW_SAMPLE, responses, 0, sample_idx, var_type, 0, CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER)); printf( "\n"); } // compute prediction error on train and test data for( i = 0; i < nsamples_all; i++ ) { double r; CvMat sample; cvGetRow( data, &sample, i ); r = forest.predict( &sample ); r = fabs((double)r - responses->data.fl[i]) <= FLT_EPSILON ? 1 : 0; if( i < ntrain_samples ) train_hr += r; else test_hr += r; } test_hr /= (double)(nsamples_all-ntrain_samples); train_hr /= (double)ntrain_samples; printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n", train_hr*100., test_hr*100. ); printf( "Number of trees: %d\n", forest.get_tree_count() ); // Print variable importance var_importance = (CvMat*)forest.get_var_importance(); if( var_importance ) { double rt_imp_sum = cvSum( var_importance ).val[0]; printf("var#\timportance (in %%):\n"); for( i = 0; i < var_importance->cols; i++ ) printf( "%-2d\t%-4.1f\n", i, 100.f*var_importance->data.fl[i]/rt_imp_sum); } //Print some proximitites printf( "Proximities between some samples corresponding to the letter 'T':\n" ); { CvMat sample1, sample2; const int pairs[][2] = {{0,103}, {0,106}, {106,103}, {-1,-1}}; for( i = 0; pairs[i][0] >= 0; i++ ) { cvGetRow( data, &sample1, pairs[i][0] ); cvGetRow( data, &sample2, pairs[i][1] ); printf( "proximity(%d,%d) = %.1f%%\n", pairs[i][0], pairs[i][1], forest.get_proximity( &sample1, &sample2 )*100. ); } } // Save Random Trees classifier to file if needed if( filename_to_save ) forest.save( filename_to_save ); cvReleaseMat( &sample_idx ); cvReleaseMat( &var_type ); cvReleaseMat( &data ); cvReleaseMat( &responses ); return 0; } static int build_boost_classifier( char* data_filename, char* filename_to_save, char* filename_to_load ) { const int class_count = 26; CvMat* data = 0; CvMat* responses = 0; CvMat* var_type = 0; CvMat* temp_sample = 0; CvMat* weak_responses = 0; int ok = read_num_class_data( data_filename, 16, &data, &responses ); int nsamples_all = 0, ntrain_samples = 0; int var_count; int i, j, k; double train_hr = 0, test_hr = 0; CvBoost boost; if( !ok ) { printf( "Could not read the database %s\n", data_filename ); return -1; } printf( "The database %s is loaded.\n", data_filename ); nsamples_all = data->rows; ntrain_samples = (int)(nsamples_all*0.5); var_count = data->cols; // Create or load Boosted Tree classifier if( filename_to_load ) { // load classifier from the specified file boost.load( filename_to_load ); ntrain_samples = 0; if( !boost.get_weak_predictors() ) { printf( "Could not read the classifier %s\n", filename_to_load ); return -1; } printf( "The classifier %s is loaded.\n", data_filename ); } else { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // // As currently boosted tree classifier in MLL can only be trained // for 2-class problems, we transform the training database by // "unrolling" each training sample as many times as the number of // classes (26) that we have. // // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CvMat* new_data = cvCreateMat( ntrain_samples*class_count, var_count + 1, CV_32F ); CvMat* new_responses = cvCreateMat( ntrain_samples*class_count, 1, CV_32S ); // 1. unroll the database type mask printf( "Unrolling the database...\n"); for( i = 0; i < ntrain_samples; i++ ) { float* data_row = (float*)(data->data.ptr + data->step*i); for( j = 0; j < class_count; j++ ) { float* new_data_row = (float*)(new_data->data.ptr + new_data->step*(i*class_count+j)); for( k = 0; k < var_count; k++ ) new_data_row[k] = data_row[k]; new_data_row[var_count] = (float)j; new_responses->data.i[i*class_count + j] = responses->data.fl[i] == j+'A'; } } // 2. create type mask var_type = cvCreateMat( var_count + 2, 1, CV_8U ); cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) ); // the last indicator variable, as well // as the new (binary) response are categorical cvSetReal1D( var_type, var_count, CV_VAR_CATEGORICAL ); cvSetReal1D( var_type, var_count+1, CV_VAR_CATEGORICAL ); // 3. train classifier printf( "Training the classifier (may take a few minutes)...\n"); boost.train( new_data, CV_ROW_SAMPLE, new_responses, 0, 0, var_type, 0, CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )); cvReleaseMat( &new_data ); cvReleaseMat( &new_responses ); printf("\n"); } temp_sample = cvCreateMat( 1, var_count + 1, CV_32F ); weak_responses = cvCreateMat( 1, boost.get_weak_predictors()->total, CV_32F ); // compute prediction error on train and test data for( i = 0; i < nsamples_all; i++ ) { int best_class = 0; double max_sum = -DBL_MAX; double r; CvMat sample; cvGetRow( data, &sample, i ); for( k = 0; k < var_count; k++ ) temp_sample->data.fl[k] = sample.data.fl[k]; for( j = 0; j < class_count; j++ ) { temp_sample->data.fl[var_count] = (float)j; boost.predict( temp_sample, 0, weak_responses ); double sum = cvSum( weak_responses ).val[0]; if( max_sum < sum ) { max_sum = sum; best_class = j + 'A'; } } r = fabs(best_class - responses->data.fl[i]) < FLT_EPSILON ? 1 : 0; if( i < ntrain_samples ) train_hr += r; else test_hr += r; } test_hr /= (double)(nsamples_all-ntrain_samples); train_hr /= (double)ntrain_samples; printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n", train_hr*100., test_hr*100. ); printf( "Number of trees: %d\n", boost.get_weak_predictors()->total ); // Save classifier to file if needed if( filename_to_save ) boost.save( filename_to_save ); cvReleaseMat( &temp_sample ); cvReleaseMat( &weak_responses ); cvReleaseMat( &var_type ); cvReleaseMat( &data ); cvReleaseMat( &responses ); return 0; } static int build_mlp_classifier( char* data_filename, char* filename_to_save, char* filename_to_load ) { const int class_count = 26; CvMat* data = 0; CvMat train_data; CvMat* responses = 0; CvMat* mlp_response = 0; int ok = read_num_class_data( data_filename, 16, &data, &responses ); int nsamples_all = 0, ntrain_samples = 0; int i, j; double train_hr = 0, test_hr = 0; CvANN_MLP mlp; if( !ok ) { printf( "Could not read the database %s\n", data_filename ); return -1; } printf( "The database %s is loaded.\n", data_filename ); nsamples_all = data->rows; ntrain_samples = (int)(nsamples_all*0.8); // Create or load MLP classifier if( filename_to_load ) { // load classifier from the specified file mlp.load( filename_to_load ); ntrain_samples = 0; if( !mlp.get_layer_count() ) { printf( "Could not read the classifier %s\n", filename_to_load ); return -1; } printf( "The classifier %s is loaded.\n", data_filename ); } else { // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // // MLP does not support categorical variables by explicitly. // So, instead of the output class label, we will use // a binary vector of components for training and, // therefore, MLP will give us a vector of "probabilities" at the // prediction stage // // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CvMat* new_responses = cvCreateMat( ntrain_samples, class_count, CV_32F ); // 1. unroll the responses printf( "Unrolling the responses...\n"); for( i = 0; i < ntrain_samples; i++ ) { int cls_label = cvRound(responses->data.fl[i]) - 'A'; float* bit_vec = (float*)(new_responses->data.ptr + i*new_responses->step); for( j = 0; j < class_count; j++ ) bit_vec[j] = 0.f; bit_vec[cls_label] = 1.f; } cvGetRows( data, &train_data, 0, ntrain_samples ); // 2. train classifier int layer_sz[] = { data->cols, 100, 100, class_count }; CvMat layer_sizes = cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz ); mlp.create( &layer_sizes ); printf( "Training the classifier (may take a few minutes)...\n"); mlp.train( &train_data, new_responses, 0, 0, CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), #if 1 CvANN_MLP_TrainParams::BACKPROP,0.001)); #else CvANN_MLP_TrainParams::RPROP,0.05)); #endif cvReleaseMat( &new_responses ); printf("\n"); } mlp_response = cvCreateMat( 1, class_count, CV_32F ); // compute prediction error on train and test data for( i = 0; i < nsamples_all; i++ ) { int best_class; CvMat sample; cvGetRow( data, &sample, i ); CvPoint max_loc = {0,0}; mlp.predict( &sample, mlp_response ); cvMinMaxLoc( mlp_response, 0, 0, 0, &max_loc, 0 ); best_class = max_loc.x + 'A'; int r = fabs((double)best_class - responses->data.fl[i]) < FLT_EPSILON ? 1 : 0; if( i < ntrain_samples ) train_hr += r; else test_hr += r; } test_hr /= (double)(nsamples_all-ntrain_samples); train_hr /= (double)ntrain_samples; printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n", train_hr*100., test_hr*100. ); // Save classifier to file if needed if( filename_to_save ) mlp.save( filename_to_save ); cvReleaseMat( &mlp_response ); cvReleaseMat( &data ); cvReleaseMat( &responses ); return 0; } static int build_knearest_classifier( char* data_filename, int K ) { const int var_count = 16; CvMat* data = 0; CvMat train_data; CvMat* responses; int ok = read_num_class_data( data_filename, 16, &data, &responses ); int nsamples_all = 0, ntrain_samples = 0; //int i, j; //double /*train_hr = 0,*/ test_hr = 0; CvANN_MLP mlp; if( !ok ) { printf( "Could not read the database %s\n", data_filename ); return -1; } printf( "The database %s is loaded.\n", data_filename ); nsamples_all = data->rows; ntrain_samples = (int)(nsamples_all*0.8); // 1. unroll the responses printf( "Unrolling the responses...\n"); cvGetRows( data, &train_data, 0, ntrain_samples ); // 2. train classifier CvMat* train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1); for (int i = 0; i < ntrain_samples; i++) train_resp->data.fl[i] = responses->data.fl[i]; CvKNearest knearest(&train_data, train_resp); CvMat* nearests = cvCreateMat( (nsamples_all - ntrain_samples), K, CV_32FC1); float* _sample = new float[var_count * (nsamples_all - ntrain_samples)]; CvMat sample = cvMat( nsamples_all - ntrain_samples, 16, CV_32FC1, _sample ); float* true_results = new float[nsamples_all - ntrain_samples]; for (int j = ntrain_samples; j < nsamples_all; j++) { float *s = data->data.fl + j * var_count; for (int i = 0; i < var_count; i++) { sample.data.fl[(j - ntrain_samples) * var_count + i] = s[i]; } true_results[j - ntrain_samples] = responses->data.fl[j]; } CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1); knearest.find_nearest(&sample, K, result, 0, nearests, 0); int true_resp = 0; int accuracy = 0; for (int i = 0; i < nsamples_all - ntrain_samples; i++) { if (result->data.fl[i] == true_results[i]) true_resp++; for(int k = 0; k < K; k++ ) { if( nearests->data.fl[i * K + k] == true_results[i]) accuracy++; } } printf("true_resp = %f%%\tavg accuracy = %f%%\n", (float)true_resp / (nsamples_all - ntrain_samples) * 100, (float)accuracy / (nsamples_all - ntrain_samples) / K * 100); delete[] true_results; delete[] _sample; cvReleaseMat( &train_resp ); cvReleaseMat( &nearests ); cvReleaseMat( &result ); cvReleaseMat( &data ); cvReleaseMat( &responses ); return 0; } static int build_nbayes_classifier( char* data_filename ) { const int var_count = 16; CvMat* data = 0; CvMat train_data; CvMat* responses; int ok = read_num_class_data( data_filename, 16, &data, &responses ); int nsamples_all = 0, ntrain_samples = 0; //int i, j; //double /*train_hr = 0, */test_hr = 0; CvANN_MLP mlp; if( !ok ) { printf( "Could not read the database %s\n", data_filename ); return -1; } printf( "The database %s is loaded.\n", data_filename ); nsamples_all = data->rows; ntrain_samples = (int)(nsamples_all*0.5); // 1. unroll the responses printf( "Unrolling the responses...\n"); cvGetRows( data, &train_data, 0, ntrain_samples ); // 2. train classifier CvMat* train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1); for (int i = 0; i < ntrain_samples; i++) train_resp->data.fl[i] = responses->data.fl[i]; CvNormalBayesClassifier nbayes(&train_data, train_resp); float* _sample = new float[var_count * (nsamples_all - ntrain_samples)]; CvMat sample = cvMat( nsamples_all - ntrain_samples, 16, CV_32FC1, _sample ); float* true_results = new float[nsamples_all - ntrain_samples]; for (int j = ntrain_samples; j < nsamples_all; j++) { float *s = data->data.fl + j * var_count; for (int i = 0; i < var_count; i++) { sample.data.fl[(j - ntrain_samples) * var_count + i] = s[i]; } true_results[j - ntrain_samples] = responses->data.fl[j]; } CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1); (int)nbayes.predict(&sample, result); int true_resp = 0; //int accuracy = 0; for (int i = 0; i < nsamples_all - ntrain_samples; i++) { if (result->data.fl[i] == true_results[i]) true_resp++; } printf("true_resp = %f%%\n", (float)true_resp / (nsamples_all - ntrain_samples) * 100); delete[] true_results; delete[] _sample; cvReleaseMat( &train_resp ); cvReleaseMat( &result ); cvReleaseMat( &data ); cvReleaseMat( &responses ); return 0; } static int build_svm_classifier( char* data_filename ) { CvMat* data = 0; CvMat* responses = 0; CvMat train_data; int nsamples_all = 0, ntrain_samples = 0; int var_count; CvSVM svm; int ok = read_num_class_data( data_filename, 16, &data, &responses ); if( !ok ) { printf( "Could not read the database %s\n", data_filename ); return -1; } ////////// SVM parameters /////////////////////////////// CvSVMParams param; param.kernel_type=CvSVM::LINEAR; param.svm_type=CvSVM::C_SVC; param.C=1; /////////////////////////////////////////////////////////// printf( "The database %s is loaded.\n", data_filename ); nsamples_all = data->rows; ntrain_samples = (int)(nsamples_all*0.1); var_count = data->cols; // train classifier printf( "Training the classifier (may take a few minutes)...\n"); cvGetRows( data, &train_data, 0, ntrain_samples ); CvMat* train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1); for (int i = 0; i < ntrain_samples; i++) train_resp->data.fl[i] = responses->data.fl[i]; svm.train(&train_data, train_resp, 0, 0, param); // classification std::vector _sample(var_count * (nsamples_all - ntrain_samples)); CvMat sample = cvMat( nsamples_all - ntrain_samples, 16, CV_32FC1, &_sample[0] ); std::vector true_results(nsamples_all - ntrain_samples); for (int j = ntrain_samples; j < nsamples_all; j++) { float *s = data->data.fl + j * var_count; for (int i = 0; i < var_count; i++) { sample.data.fl[(j - ntrain_samples) * var_count + i] = s[i]; } true_results[j - ntrain_samples] = responses->data.fl[j]; } CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1); printf("Classification (may take a few minutes)...\n"); svm.predict(&sample, result); int true_resp = 0; for (int i = 0; i < nsamples_all - ntrain_samples; i++) { if (result->data.fl[i] == true_results[i]) true_resp++; } printf("true_resp = %f%%\n", (float)true_resp / (nsamples_all - ntrain_samples) * 100); cvReleaseMat( &train_resp ); cvReleaseMat( &result ); cvReleaseMat( &data ); cvReleaseMat( &responses ); return 0; } int main( int argc, char *argv[] ) { char* filename_to_save = 0; char* filename_to_load = 0; char default_data_filename[] = "./letter-recognition.data"; char* data_filename = default_data_filename; int method = 0; int i; for( i = 1; i < argc; i++ ) { if( strcmp(argv[i],"-data") == 0 ) // flag "-data letter_recognition.xml" { i++; data_filename = argv[i]; } else if( strcmp(argv[i],"-save") == 0 ) // flag "-save filename.xml" { i++; filename_to_save = argv[i]; } else if( strcmp(argv[i],"-load") == 0) // flag "-load filename.xml" { i++; filename_to_load = argv[i]; } else if( strcmp(argv[i],"-boost") == 0) { method = 1; } else if( strcmp(argv[i],"-mlp") == 0 ) { method = 2; } else if ( strcmp(argv[i], "-knearest") == 0) { method = 3; } else if ( strcmp(argv[i], "-nbayes") == 0) { method = 4; } else if ( strcmp(argv[i], "-svm") == 0) { method = 5; } else break; } if( i < argc || (method == 0 ? build_rtrees_classifier( data_filename, filename_to_save, filename_to_load ) : method == 1 ? build_boost_classifier( data_filename, filename_to_save, filename_to_load ) : method == 2 ? build_mlp_classifier( data_filename, filename_to_save, filename_to_load ) : method == 3 ? build_knearest_classifier( data_filename, 10 ) : method == 4 ? build_nbayes_classifier( data_filename) : method == 5 ? build_svm_classifier( data_filename ): -1) < 0) { help(); } return 0; }