#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/ml/ml.hpp" #include #include #include #if defined WIN32 || defined _WIN32 #include "sys/types.h" #endif #include #define DEBUG_DESC_PROGRESS using namespace cv; using namespace std; const string paramsFile = "params.xml"; const string vocabularyFile = "vocabulary.xml.gz"; const string bowImageDescriptorsDir = "/bowImageDescriptors"; const string svmsDir = "/svms"; const string plotsDir = "/plots"; void help(char** argv) { cout << "\nThis program shows how to read in, train on and produce test results for the PASCAL VOC (Visual Object Challenge) data. \n" << "It shows how to use detectors, descriptors and recognition methods \n" "Using OpenCV version %s\n" << CV_VERSION << "\n" << "Call: \n" << "Format:\n ./" << argv[0] << " [VOC path] [result directory] \n" << " or: \n" << " ./" << argv[0] << " [VOC path] [result directory] [feature detector] [descriptor extractor] [descriptor matcher] \n" << "\n" << "Input parameters: \n" << "[VOC path] Path to Pascal VOC data (e.g. /home/my/VOCdevkit/VOC2010). Note: VOC2007-VOC2010 are supported. \n" << "[result directory] Path to result diractory. Following folders will be created in [result directory]: \n" << " bowImageDescriptors - to store image descriptors, \n" << " svms - to store trained svms, \n" << " plots - to store files for plots creating. \n" << "[feature detector] Feature detector name (e.g. SURF, FAST...) - see createFeatureDetector() function in detectors.cpp \n" << " Currently 12/2010, this is FAST, STAR, SIFT, SURF, MSER, GFTT, HARRIS \n" << "[descriptor extractor] Descriptor extractor name (e.g. SURF, SIFT) - see createDescriptorExtractor() function in descriptors.cpp \n" << " Currently 12/2010, this is SURF, OpponentSIFT, SIFT, OpponentSURF, BRIEF \n" << "[descriptor matcher] Descriptor matcher name (e.g. BruteForce) - see createDescriptorMatcher() function in matchers.cpp \n" << " Currently 12/2010, this is BruteForce, BruteForce-L1, FlannBased, BruteForce-Hamming, BruteForce-HammingLUT \n" << "\n"; } void makeDir( const string& dir ) { #if defined WIN32 || defined _WIN32 CreateDirectory( dir.c_str(), 0 ); #else mkdir( dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH ); #endif } void makeUsedDirs( const string& rootPath ) { makeDir(rootPath + bowImageDescriptorsDir); makeDir(rootPath + svmsDir); makeDir(rootPath + plotsDir); } /****************************************************************************************\ * Classes to work with PASCAL VOC dataset * \****************************************************************************************/ // // TODO: refactor this part of the code // //used to specify the (sub-)dataset over which operations are performed enum ObdDatasetType {CV_OBD_TRAIN, CV_OBD_TEST}; class ObdObject { public: string object_class; Rect boundingBox; }; //extended object data specific to VOC enum VocPose {CV_VOC_POSE_UNSPECIFIED, CV_VOC_POSE_FRONTAL, CV_VOC_POSE_REAR, CV_VOC_POSE_LEFT, CV_VOC_POSE_RIGHT}; class VocObjectData { public: bool difficult; bool occluded; bool truncated; VocPose pose; }; //enum VocDataset {CV_VOC2007, CV_VOC2008, CV_VOC2009, CV_VOC2010}; enum VocPlotType {CV_VOC_PLOT_SCREEN, CV_VOC_PLOT_PNG}; enum VocGT {CV_VOC_GT_NONE, CV_VOC_GT_DIFFICULT, CV_VOC_GT_PRESENT}; enum VocConfCond {CV_VOC_CCOND_RECALL, CV_VOC_CCOND_SCORETHRESH}; enum VocTask {CV_VOC_TASK_CLASSIFICATION, CV_VOC_TASK_DETECTION}; class ObdImage { public: ObdImage(string p_id, string p_path) : id(p_id), path(p_path) {} string id; string path; }; //used by getDetectorGroundTruth to sort a two dimensional list of floats in descending order class ObdScoreIndexSorter { public: float score; int image_idx; int obj_idx; bool operator < (const ObdScoreIndexSorter& compare) const {return (score < compare.score);} }; class VocData { public: VocData( const string& vocPath, bool useTestDataset ) { initVoc( vocPath, useTestDataset ); } ~VocData(){} /* functions for returning classification/object data for multiple images given an object class */ void getClassImages(const string& obj_class, const ObdDatasetType dataset, vector& images, vector& object_present); void getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector& images, vector >& objects); void getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector& images, vector >& objects, vector >& object_data, vector& ground_truth); /* functions for returning object data for a single image given an image id */ ObdImage getObjects(const string& id, vector& objects); ObdImage getObjects(const string& id, vector& objects, vector& object_data); ObdImage getObjects(const string& obj_class, const string& id, vector& objects, vector& object_data, VocGT& ground_truth); /* functions for returning the ground truth (present/absent) for groups of images */ void getClassifierGroundTruth(const string& obj_class, const vector& images, vector& ground_truth); void getClassifierGroundTruth(const string& obj_class, const vector& images, vector& ground_truth); int getDetectorGroundTruth(const string& obj_class, const ObdDatasetType dataset, const vector& images, const vector >& bounding_boxes, const vector >& scores, vector >& ground_truth, vector >& detection_difficult, bool ignore_difficult = true); /* functions for writing VOC-compatible results files */ void writeClassifierResultsFile(const string& out_dir, const string& obj_class, const ObdDatasetType dataset, const vector& images, const vector& scores, const int competition = 1, const bool overwrite_ifexists = false); /* functions for calculating metrics from a set of classification/detection results */ string getResultsFilename(const string& obj_class, const VocTask task, const ObdDatasetType dataset, const int competition = -1, const int number = -1); void calcClassifierPrecRecall(const string& obj_class, const vector& images, const vector& scores, vector& precision, vector& recall, float& ap, vector& ranking); void calcClassifierPrecRecall(const string& obj_class, const vector& images, const vector& scores, vector& precision, vector& recall, float& ap); void calcClassifierPrecRecall(const string& input_file, vector& precision, vector& recall, float& ap, bool outputRankingFile = false); /* functions for calculating confusion matrices */ void calcClassifierConfMatRow(const string& obj_class, const vector& images, const vector& scores, const VocConfCond cond, const float threshold, vector& output_headers, vector& output_values); void calcDetectorConfMatRow(const string& obj_class, const ObdDatasetType dataset, const vector& images, const vector >& scores, const vector >& bounding_boxes, const VocConfCond cond, const float threshold, vector& output_headers, vector& output_values, bool ignore_difficult = true); /* functions for outputting gnuplot output files */ void savePrecRecallToGnuplot(const string& output_file, const vector& precision, const vector& recall, const float ap, const string title = string(), const VocPlotType plot_type = CV_VOC_PLOT_SCREEN); /* functions for reading in result/ground truth files */ void readClassifierGroundTruth(const string& obj_class, const ObdDatasetType dataset, vector& images, vector& object_present); void readClassifierResultsFile(const std:: string& input_file, vector& images, vector& scores); void readDetectorResultsFile(const string& input_file, vector& images, vector >& scores, vector >& bounding_boxes); /* functions for getting dataset info */ const vector& getObjectClasses(); string getResultsDirectory(); protected: void initVoc( const string& vocPath, const bool useTestDataset ); void initVoc2007to2010( const string& vocPath, const bool useTestDataset); void readClassifierGroundTruth(const string& filename, vector& image_codes, vector& object_present); void readClassifierResultsFile(const string& input_file, vector& image_codes, vector& scores); void readDetectorResultsFile(const string& input_file, vector& image_codes, vector >& scores, vector >& bounding_boxes); void extractVocObjects(const string filename, vector& objects, vector& object_data); string getImagePath(const string& input_str); void getClassImages_impl(const string& obj_class, const string& dataset_str, vector& images, vector& object_present); void calcPrecRecall_impl(const vector& ground_truth, const vector& scores, vector& precision, vector& recall, float& ap, vector& ranking, int recall_normalization = -1); //test two bounding boxes to see if they meet the overlap criteria defined in the VOC documentation float testBoundingBoxesForOverlap(const Rect detection, const Rect ground_truth); //extract class and dataset name from a VOC-standard classification/detection results filename void extractDataFromResultsFilename(const string& input_file, string& class_name, string& dataset_name); //get classifier ground truth for a single image bool getClassifierGroundTruthImage(const string& obj_class, const string& id); //utility functions void getSortOrder(const vector& values, vector& order, bool descending = true); int stringToInteger(const string input_str); void readFileToString(const string filename, string& file_contents); string integerToString(const int input_int); string checkFilenamePathsep(const string filename, bool add_trailing_slash = false); void convertImageCodesToObdImages(const vector& image_codes, vector& images); int extractXMLBlock(const string src, const string tag, const int searchpos, string& tag_contents); //utility sorter struct orderingSorter { bool operator ()(std::pair::const_iterator> const& a, std::pair::const_iterator> const& b) { return (*a.second) > (*b.second); } }; //data members string m_vocPath; string m_vocName; //string m_resPath; string m_annotation_path; string m_image_path; string m_imageset_path; string m_class_imageset_path; vector m_classifier_gt_all_ids; vector m_classifier_gt_all_present; string m_classifier_gt_class; //data members string m_train_set; string m_test_set; vector m_object_classes; float m_min_overlap; bool m_sampled_ap; }; //Return the classification ground truth data for all images of a given VOC object class //-------------------------------------------------------------------------------------- //INPUTS: // - obj_class The VOC object class identifier string // - dataset Specifies whether to extract images from the training or test set //OUTPUTS: // - images An array of ObdImage containing info of all images extracted from the ground truth file // - object_present An array of bools specifying whether the object defined by 'obj_class' is present in each image or not //NOTES: // This function is primarily useful for the classification task, where only // whether a given object is present or not in an image is required, and not each object instance's // position etc. void VocData::getClassImages(const string& obj_class, const ObdDatasetType dataset, vector& images, vector& object_present) { string dataset_str; //generate the filename of the classification ground-truth textfile for the object class if (dataset == CV_OBD_TRAIN) { dataset_str = m_train_set; } else { dataset_str = m_test_set; } getClassImages_impl(obj_class, dataset_str, images, object_present); } void VocData::getClassImages_impl(const string& obj_class, const string& dataset_str, vector& images, vector& object_present) { //generate the filename of the classification ground-truth textfile for the object class string gtFilename = m_class_imageset_path; gtFilename.replace(gtFilename.find("%s"),2,obj_class); gtFilename.replace(gtFilename.find("%s"),2,dataset_str); //parse the ground truth file, storing in two separate vectors //for the image code and the ground truth value vector image_codes; readClassifierGroundTruth(gtFilename, image_codes, object_present); //prepare output arrays images.clear(); convertImageCodesToObdImages(image_codes, images); } //Return the object data for all images of a given VOC object class //----------------------------------------------------------------- //INPUTS: // - obj_class The VOC object class identifier string // - dataset Specifies whether to extract images from the training or test set //OUTPUTS: // - images An array of ObdImage containing info of all images in chosen dataset (tag, path etc.) // - objects Contains the extended object info (bounding box etc.) for each object instance in each image // - object_data Contains VOC-specific extended object info (marked difficult etc.) // - ground_truth Specifies whether there are any difficult/non-difficult instances of the current // object class within each image //NOTES: // This function returns extended object information in addition to the absent/present // classification data returned by getClassImages. The objects returned for each image in the 'objects' // array are of all object classes present in the image, and not just the class defined by 'obj_class'. // 'ground_truth' can be used to determine quickly whether an object instance of the given class is present // in an image or not. void VocData::getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector& images, vector >& objects) { vector > object_data; vector ground_truth; getClassObjects(obj_class,dataset,images,objects,object_data,ground_truth); } void VocData::getClassObjects(const string& obj_class, const ObdDatasetType dataset, vector& images, vector >& objects, vector >& object_data, vector& ground_truth) { //generate the filename of the classification ground-truth textfile for the object class string gtFilename = m_class_imageset_path; gtFilename.replace(gtFilename.find("%s"),2,obj_class); if (dataset == CV_OBD_TRAIN) { gtFilename.replace(gtFilename.find("%s"),2,m_train_set); } else { gtFilename.replace(gtFilename.find("%s"),2,m_test_set); } //parse the ground truth file, storing in two separate vectors //for the image code and the ground truth value vector image_codes; vector object_present; readClassifierGroundTruth(gtFilename, image_codes, object_present); //prepare output arrays images.clear(); objects.clear(); object_data.clear(); ground_truth.clear(); string annotationFilename; vector image_objects; vector image_object_data; VocGT image_gt; //transfer to output arrays and read in object data for each image for (size_t i = 0; i < image_codes.size(); ++i) { ObdImage image = getObjects(obj_class, image_codes[i], image_objects, image_object_data, image_gt); images.push_back(image); objects.push_back(image_objects); object_data.push_back(image_object_data); ground_truth.push_back(image_gt); } } //Return ground truth data for the objects present in an image with a given UID //----------------------------------------------------------------------------- //INPUTS: // - id VOC Dataset unique identifier (string code in form YYYY_XXXXXX where YYYY is the year) //OUTPUTS: // - obj_class (*3) Specifies the object class to use to resolve 'ground_truth' // - objects Contains the extended object info (bounding box etc.) for each object in the image // - object_data (*2,3) Contains VOC-specific extended object info (marked difficult etc.) // - ground_truth (*3) Specifies whether there are any difficult/non-difficult instances of the current // object class within the image //RETURN VALUE: // ObdImage containing path and other details of image file with given code //NOTES: // There are three versions of this function // * One returns a simple array of objects given an id [1] // * One returns the same as (1) plus VOC specific object data [2] // * One returns the same as (2) plus the ground_truth flag. This also requires an extra input obj_class [3] ObdImage VocData::getObjects(const string& id, vector& objects) { vector object_data; ObdImage image = getObjects(id, objects, object_data); return image; } ObdImage VocData::getObjects(const string& id, vector& objects, vector& object_data) { //first generate the filename of the annotation file string annotationFilename = m_annotation_path; annotationFilename.replace(annotationFilename.find("%s"),2,id); //extract objects contained in the current image from the xml extractVocObjects(annotationFilename,objects,object_data); //generate image path from extracted string code string path = getImagePath(id); ObdImage image(id, path); return image; } ObdImage VocData::getObjects(const string& obj_class, const string& id, vector& objects, vector& object_data, VocGT& ground_truth) { //extract object data (except for ground truth flag) ObdImage image = getObjects(id,objects,object_data); //pregenerate a flag to indicate whether the current class is present or not in the image ground_truth = CV_VOC_GT_NONE; //iterate through all objects in current image for (size_t j = 0; j < objects.size(); ++j) { if (objects[j].object_class == obj_class) { if (object_data[j].difficult == false) { //if at least one non-difficult example is present, this flag is always set to CV_VOC_GT_PRESENT ground_truth = CV_VOC_GT_PRESENT; break; } else { //set if at least one object instance is present, but it is marked difficult ground_truth = CV_VOC_GT_DIFFICULT; } } } return image; } //Return ground truth data for the presence/absence of a given object class in an arbitrary array of images //--------------------------------------------------------------------------------------------------------- //INPUTS: // - obj_class The VOC object class identifier string // - images An array of ObdImage OR strings containing the images for which ground truth // will be computed //OUTPUTS: // - ground_truth An output array indicating the presence/absence of obj_class within each image void VocData::getClassifierGroundTruth(const string& obj_class, const vector& images, vector& ground_truth) { vector(images.size()).swap(ground_truth); vector objects; vector object_data; vector::iterator gt_it = ground_truth.begin(); for (vector::const_iterator it = images.begin(); it != images.end(); ++it, ++gt_it) { //getObjects(obj_class, it->id, objects, object_data, voc_ground_truth); (*gt_it) = (getClassifierGroundTruthImage(obj_class, it->id)); } } void VocData::getClassifierGroundTruth(const string& obj_class, const vector& images, vector& ground_truth) { vector(images.size()).swap(ground_truth); vector objects; vector object_data; vector::iterator gt_it = ground_truth.begin(); for (vector::const_iterator it = images.begin(); it != images.end(); ++it, ++gt_it) { //getObjects(obj_class, (*it), objects, object_data, voc_ground_truth); (*gt_it) = (getClassifierGroundTruthImage(obj_class, (*it))); } } //Return ground truth data for the accuracy of detection results //-------------------------------------------------------------- //INPUTS: // - obj_class The VOC object class identifier string // - images An array of ObdImage containing the images for which ground truth // will be computed // - bounding_boxes A 2D input array containing the bounding box rects of the objects of // obj_class which were detected in each image //OUTPUTS: // - ground_truth A 2D output array indicating whether each object detection was accurate // or not // - detection_difficult A 2D output array indicating whether the detection fired on an object // marked as 'difficult'. This allows it to be ignored if necessary // (the voc documentation specifies objects marked as difficult // have no effects on the results and are effectively ignored) // - (ignore_difficult) If set to true, objects marked as difficult will be ignored when returning // the number of hits for p-r normalization (default = true) //RETURN VALUE: // Returns the number of object hits in total in the gt to allow proper normalization // of a p-r curve //NOTES: // As stated in the VOC documentation, multiple detections of the same object in an image are // considered FALSE detections e.g. 5 detections of a single object is counted as 1 correct // detection and 4 false detections - it is the responsibility of the participant's system // to filter multiple detections from its output int VocData::getDetectorGroundTruth(const string& obj_class, const ObdDatasetType dataset, const vector& images, const vector >& bounding_boxes, const vector >& scores, vector >& ground_truth, vector >& detection_difficult, bool ignore_difficult) { int recall_normalization = 0; /* first create a list of indices referring to the elements of bounding_boxes and scores in * descending order of scores */ vector sorted_ids; { /* first count how many objects to allow preallocation */ size_t obj_count = 0; CV_Assert(images.size() == bounding_boxes.size()); CV_Assert(scores.size() == bounding_boxes.size()); for (size_t im_idx = 0; im_idx < scores.size(); ++im_idx) { CV_Assert(scores[im_idx].size() == bounding_boxes[im_idx].size()); obj_count += scores[im_idx].size(); } /* preallocate id vector */ sorted_ids.resize(obj_count); /* now copy across scores and indexes to preallocated vector */ int flat_pos = 0; for (size_t im_idx = 0; im_idx < scores.size(); ++im_idx) { for (size_t ob_idx = 0; ob_idx < scores[im_idx].size(); ++ob_idx) { sorted_ids[flat_pos].score = scores[im_idx][ob_idx]; sorted_ids[flat_pos].image_idx = (int)im_idx; sorted_ids[flat_pos].obj_idx = (int)ob_idx; ++flat_pos; } } /* and sort the vector in descending order of score */ std::sort(sorted_ids.begin(),sorted_ids.end()); std::reverse(sorted_ids.begin(),sorted_ids.end()); } /* prepare ground truth + difficult vector (1st dimension) */ vector >(images.size()).swap(ground_truth); vector >(images.size()).swap(detection_difficult); vector > detected(images.size()); vector > img_objects(images.size()); vector > img_object_data(images.size()); /* preload object ground truth bounding box data */ { vector > img_objects_all(images.size()); vector > img_object_data_all(images.size()); for (size_t image_idx = 0; image_idx < images.size(); ++image_idx) { /* prepopulate ground truth bounding boxes */ getObjects(images[image_idx].id, img_objects_all[image_idx], img_object_data_all[image_idx]); /* meanwhile, also set length of target ground truth + difficult vector to same as number of object detections (2nd dimension) */ ground_truth[image_idx].resize(bounding_boxes[image_idx].size()); detection_difficult[image_idx].resize(bounding_boxes[image_idx].size()); } /* save only instances of the object class concerned */ for (size_t image_idx = 0; image_idx < images.size(); ++image_idx) { for (size_t obj_idx = 0; obj_idx < img_objects_all[image_idx].size(); ++obj_idx) { if (img_objects_all[image_idx][obj_idx].object_class == obj_class) { img_objects[image_idx].push_back(img_objects_all[image_idx][obj_idx]); img_object_data[image_idx].push_back(img_object_data_all[image_idx][obj_idx]); } } detected[image_idx].resize(img_objects[image_idx].size(), false); } } /* calculate the total number of objects in the ground truth for the current dataset */ { vector gt_images; vector gt_object_present; getClassImages(obj_class, dataset, gt_images, gt_object_present); for (size_t image_idx = 0; image_idx < gt_images.size(); ++image_idx) { vector gt_img_objects; vector gt_img_object_data; getObjects(gt_images[image_idx].id, gt_img_objects, gt_img_object_data); for (size_t obj_idx = 0; obj_idx < gt_img_objects.size(); ++obj_idx) { if (gt_img_objects[obj_idx].object_class == obj_class) { if ((gt_img_object_data[obj_idx].difficult == false) || (ignore_difficult == false)) ++recall_normalization; } } } } #ifdef PR_DEBUG int printed_count = 0; #endif /* now iterate through detections in descending order of score, assigning to ground truth bounding boxes if possible */ for (size_t detect_idx = 0; detect_idx < sorted_ids.size(); ++detect_idx) { //read in indexes to make following code easier to read int im_idx = sorted_ids[detect_idx].image_idx; int ob_idx = sorted_ids[detect_idx].obj_idx; //set ground truth for the current object to false by default ground_truth[im_idx][ob_idx] = false; detection_difficult[im_idx][ob_idx] = false; float maxov = -1.0; bool max_is_difficult = false; int max_gt_obj_idx = -1; //-- for each detected object iterate through objects present in the bounding box ground truth -- for (size_t gt_obj_idx = 0; gt_obj_idx < img_objects[im_idx].size(); ++gt_obj_idx) { if (detected[im_idx][gt_obj_idx] == false) { //check if the detected object and ground truth object overlap by a sufficient margin float ov = testBoundingBoxesForOverlap(bounding_boxes[im_idx][ob_idx], img_objects[im_idx][gt_obj_idx].boundingBox); if (ov != -1.0) { //if all conditions are met store the overlap score and index (as objects are assigned to the highest scoring match) if (ov > maxov) { maxov = ov; max_gt_obj_idx = (int)gt_obj_idx; //store whether the maximum detection is marked as difficult or not max_is_difficult = (img_object_data[im_idx][gt_obj_idx].difficult); } } } } //-- if a match was found, set the ground truth of the current object to true -- if (maxov != -1.0) { CV_Assert(max_gt_obj_idx != -1); ground_truth[im_idx][ob_idx] = true; //store whether the maximum detection was marked as 'difficult' or not detection_difficult[im_idx][ob_idx] = max_is_difficult; //remove the ground truth object so it doesn't match with subsequent detected objects //** this is the behaviour defined by the voc documentation ** detected[im_idx][max_gt_obj_idx] = true; } #ifdef PR_DEBUG if (printed_count < 10) { cout << printed_count << ": id=" << images[im_idx].id << ", score=" << scores[im_idx][ob_idx] << " (" << ob_idx << ") [" << bounding_boxes[im_idx][ob_idx].x << "," << bounding_boxes[im_idx][ob_idx].y << "," << bounding_boxes[im_idx][ob_idx].width + bounding_boxes[im_idx][ob_idx].x << "," << bounding_boxes[im_idx][ob_idx].height + bounding_boxes[im_idx][ob_idx].y << "] detected=" << ground_truth[im_idx][ob_idx] << ", difficult=" << detection_difficult[im_idx][ob_idx] << endl; ++printed_count; /* print ground truth */ for (int gt_obj_idx = 0; gt_obj_idx < img_objects[im_idx].size(); ++gt_obj_idx) { cout << " GT: [" << img_objects[im_idx][gt_obj_idx].boundingBox.x << "," << img_objects[im_idx][gt_obj_idx].boundingBox.y << "," << img_objects[im_idx][gt_obj_idx].boundingBox.width + img_objects[im_idx][gt_obj_idx].boundingBox.x << "," << img_objects[im_idx][gt_obj_idx].boundingBox.height + img_objects[im_idx][gt_obj_idx].boundingBox.y << "]"; if (gt_obj_idx == max_gt_obj_idx) cout << " <--- (" << maxov << " overlap)"; cout << endl; } } #endif } return recall_normalization; } //Write VOC-compliant classifier results file //------------------------------------------- //INPUTS: // - obj_class The VOC object class identifier string // - dataset Specifies whether working with the training or test set // - images An array of ObdImage containing the images for which data will be saved to the result file // - scores A corresponding array of confidence scores given a query // - (competition) If specified, defines which competition the results are for (see VOC documentation - default 1) //NOTES: // The result file path and filename are determined automatically using m_results_directory as a base void VocData::writeClassifierResultsFile( const string& out_dir, const string& obj_class, const ObdDatasetType dataset, const vector& images, const vector& scores, const int competition, const bool overwrite_ifexists) { CV_Assert(images.size() == scores.size()); string output_file_base, output_file; if (dataset == CV_OBD_TRAIN) { output_file_base = out_dir + "/comp" + integerToString(competition) + "_cls_" + m_train_set + "_" + obj_class; } else { output_file_base = out_dir + "/comp" + integerToString(competition) + "_cls_" + m_test_set + "_" + obj_class; } output_file = output_file_base + ".txt"; //check if file exists, and if so create a numbered new file instead if (overwrite_ifexists == false) { struct stat stFileInfo; if (stat(output_file.c_str(),&stFileInfo) == 0) { string output_file_new; int filenum = 0; do { ++filenum; output_file_new = output_file_base + "_" + integerToString(filenum); output_file = output_file_new + ".txt"; } while (stat(output_file.c_str(),&stFileInfo) == 0); } } //output data to file std::ofstream result_file(output_file.c_str()); if (result_file.is_open()) { for (size_t i = 0; i < images.size(); ++i) { result_file << images[i].id << " " << scores[i] << endl; } result_file.close(); } else { string err_msg = "could not open classifier results file '" + output_file + "' for writing. Before running for the first time, a 'results' subdirectory should be created within the VOC dataset base directory. e.g. if the VOC data is stored in /VOC/VOC2010 then the path /VOC/results must be created."; CV_Error(CV_StsError,err_msg.c_str()); } } //--------------------------------------- //CALCULATE METRICS FROM VOC RESULTS DATA //--------------------------------------- //Utility function to construct a VOC-standard classification results filename //---------------------------------------------------------------------------- //INPUTS: // - obj_class The VOC object class identifier string // - task Specifies whether to generate a filename for the classification or detection task // - dataset Specifies whether working with the training or test set // - (competition) If specified, defines which competition the results are for (see VOC documentation // default of -1 means this is set to 1 for the classification task and 3 for the detection task) // - (number) If specified and above 0, defines which of a number of duplicate results file produced for a given set of // of settings should be used (this number will be added as a postfix to the filename) //NOTES: // This is primarily useful for returning the filename of a classification file previously computed using writeClassifierResultsFile // for example when calling calcClassifierPrecRecall string VocData::getResultsFilename(const string& obj_class, const VocTask task, const ObdDatasetType dataset, const int competition, const int number) { if ((competition < 1) && (competition != -1)) CV_Error(CV_StsBadArg,"competition argument should be a positive non-zero number or -1 to accept the default"); if ((number < 1) && (number != -1)) CV_Error(CV_StsBadArg,"number argument should be a positive non-zero number or -1 to accept the default"); string dset, task_type; if (dataset == CV_OBD_TRAIN) { dset = m_train_set; } else { dset = m_test_set; } int comp = competition; if (task == CV_VOC_TASK_CLASSIFICATION) { task_type = "cls"; if (comp == -1) comp = 1; } else { task_type = "det"; if (comp == -1) comp = 3; } stringstream ss; if (number < 1) { ss << "comp" << comp << "_" << task_type << "_" << dset << "_" << obj_class << ".txt"; } else { ss << "comp" << comp << "_" << task_type << "_" << dset << "_" << obj_class << "_" << number << ".txt"; } string filename = ss.str(); return filename; } //Calculate metrics for classification results //-------------------------------------------- //INPUTS: // - ground_truth A vector of booleans determining whether the currently tested class is present in each input image // - scores A vector containing the similarity score for each input image (higher is more similar) //OUTPUTS: // - precision A vector containing the precision calculated at each datapoint of a p-r curve generated from the result set // - recall A vector containing the recall calculated at each datapoint of a p-r curve generated from the result set // - ap The ap metric calculated from the result set // - (ranking) A vector of the same length as 'ground_truth' and 'scores' containing the order of the indices in both of // these arrays when sorting by the ranking score in descending order //NOTES: // The result file path and filename are determined automatically using m_results_directory as a base void VocData::calcClassifierPrecRecall(const string& obj_class, const vector& images, const vector& scores, vector& precision, vector& recall, float& ap, vector& ranking) { vector res_ground_truth; getClassifierGroundTruth(obj_class, images, res_ground_truth); calcPrecRecall_impl(res_ground_truth, scores, precision, recall, ap, ranking); } void VocData::calcClassifierPrecRecall(const string& obj_class, const vector& images, const vector& scores, vector& precision, vector& recall, float& ap) { vector res_ground_truth; getClassifierGroundTruth(obj_class, images, res_ground_truth); vector ranking; calcPrecRecall_impl(res_ground_truth, scores, precision, recall, ap, ranking); } //< Overloaded version which accepts VOC classification result file input instead of array of scores/ground truth > //INPUTS: // - input_file The path to the VOC standard results file to use for calculating precision/recall // If a full path is not specified, it is assumed this file is in the VOC standard results directory // A VOC standard filename can be retrieved (as used by writeClassifierResultsFile) by calling getClassifierResultsFilename void VocData::calcClassifierPrecRecall(const string& input_file, vector& precision, vector& recall, float& ap, bool outputRankingFile) { //read in classification results file vector res_image_codes; vector res_scores; string input_file_std = checkFilenamePathsep(input_file); readClassifierResultsFile(input_file_std, res_image_codes, res_scores); //extract the object class and dataset from the results file filename string class_name, dataset_name; extractDataFromResultsFilename(input_file_std, class_name, dataset_name); //generate the ground truth for the images extracted from the results file vector res_ground_truth; getClassifierGroundTruth(class_name, res_image_codes, res_ground_truth); if (outputRankingFile) { /* 1. store sorting order by score (descending) in 'order' */ vector::const_iterator> > order(res_scores.size()); size_t n = 0; for (vector::const_iterator it = res_scores.begin(); it != res_scores.end(); ++it, ++n) order[n] = make_pair(n, it); std::sort(order.begin(),order.end(),orderingSorter()); /* 2. save ranking results to text file */ string input_file_std = checkFilenamePathsep(input_file); size_t fnamestart = input_file_std.rfind("/"); string scoregt_file_str = input_file_std.substr(0,fnamestart+1) + "scoregt_" + class_name + ".txt"; std::ofstream scoregt_file(scoregt_file_str.c_str()); if (scoregt_file.is_open()) { for (size_t i = 0; i < res_scores.size(); ++i) { scoregt_file << res_image_codes[order[i].first] << " " << res_scores[order[i].first] << " " << res_ground_truth[order[i].first] << endl; } scoregt_file.close(); } else { string err_msg = "could not open scoregt file '" + scoregt_file_str + "' for writing."; CV_Error(CV_StsError,err_msg.c_str()); } } //finally, calculate precision+recall+ap vector ranking; calcPrecRecall_impl(res_ground_truth,res_scores,precision,recall,ap,ranking); } //< Protected implementation of Precision-Recall calculation used by both calcClassifierPrecRecall and calcDetectorPrecRecall > void VocData::calcPrecRecall_impl(const vector& ground_truth, const vector& scores, vector& precision, vector& recall, float& ap, vector& ranking, int recall_normalization) { CV_Assert(ground_truth.size() == scores.size()); //add extra element for p-r at 0 recall (in case that first retrieved is positive) vector(scores.size()+1).swap(precision); vector(scores.size()+1).swap(recall); // SORT RESULTS BY THEIR SCORE /* 1. store sorting order in 'order' */ VocData::getSortOrder(scores, ranking); #ifdef PR_DEBUG std::ofstream scoregt_file("D:/pr.txt"); if (scoregt_file.is_open()) { for (int i = 0; i < scores.size(); ++i) { scoregt_file << scores[ranking[i]] << " " << ground_truth[ranking[i]] << endl; } scoregt_file.close(); } #endif // CALCULATE PRECISION+RECALL int retrieved_hits = 0; int recall_norm; if (recall_normalization != -1) { recall_norm = recall_normalization; } else { recall_norm = (int)std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to(),(char)1)); } ap = 0; recall[0] = 0; for (size_t idx = 0; idx < ground_truth.size(); ++idx) { if (ground_truth[ranking[idx]] != 0) ++retrieved_hits; precision[idx+1] = static_cast(retrieved_hits)/static_cast(idx+1); recall[idx+1] = static_cast(retrieved_hits)/static_cast(recall_norm); if (idx == 0) { //add further point at 0 recall with the same precision value as the first computed point precision[idx] = precision[idx+1]; } if (recall[idx+1] == 1.0) { //if recall = 1, then end early as all positive images have been found recall.resize(idx+2); precision.resize(idx+2); break; } } /* ap calculation */ if (m_sampled_ap == false) { // FOR VOC2010+ AP IS CALCULATED FROM ALL DATAPOINTS /* make precision monotonically decreasing for purposes of calculating ap */ vector precision_monot(precision.size()); vector::iterator prec_m_it = precision_monot.begin(); for (vector::iterator prec_it = precision.begin(); prec_it != precision.end(); ++prec_it, ++prec_m_it) { vector::iterator max_elem; max_elem = std::max_element(prec_it,precision.end()); (*prec_m_it) = (*max_elem); } /* calculate ap */ for (size_t idx = 0; idx < (recall.size()-1); ++idx) { ap += (recall[idx+1] - recall[idx])*precision_monot[idx+1] + //no need to take min of prec - is monotonically decreasing 0.5f*(recall[idx+1] - recall[idx])*std::abs(precision_monot[idx+1] - precision_monot[idx]); } } else { // FOR BEFORE VOC2010 AP IS CALCULATED BY SAMPLING PRECISION AT RECALL 0.0,0.1,..,1.0 for (float recall_pos = 0.f; recall_pos <= 1.f; recall_pos += 0.1f) { //find iterator of the precision corresponding to the first recall >= recall_pos vector::iterator recall_it = recall.begin(); vector::iterator prec_it = precision.begin(); while ((*recall_it) < recall_pos) { ++recall_it; ++prec_it; if (recall_it == recall.end()) break; } /* if no recall >= recall_pos found, this level of recall is never reached so stop adding to ap */ if (recall_it == recall.end()) break; /* if the prec_it is valid, compute the max precision at this level of recall or higher */ vector::iterator max_prec = std::max_element(prec_it,precision.end()); ap += (*max_prec)/11; } } } /* functions for calculating confusion matrix rows */ //Calculate rows of a confusion matrix //------------------------------------ //INPUTS: // - obj_class The VOC object class identifier string for the confusion matrix row to compute // - images An array of ObdImage containing the images to use for the computation // - scores A corresponding array of confidence scores for the presence of obj_class in each image // - cond Defines whether to use a cut off point based on recall (CV_VOC_CCOND_RECALL) or score // (CV_VOC_CCOND_SCORETHRESH) the latter is useful for classifier detections where positive // values are positive detections and negative values are negative detections // - threshold Threshold value for cond. In case of CV_VOC_CCOND_RECALL, is proportion recall (e.g. 0.5). // In the case of CV_VOC_CCOND_SCORETHRESH is the value above which to count results. //OUTPUTS: // - output_headers An output vector of object class headers for the confusion matrix row // - output_values An output vector of values for the confusion matrix row corresponding to the classes // defined in output_headers //NOTES: // The methodology used by the classifier version of this function is that true positives have a single unit // added to the obj_class column in the confusion matrix row, whereas false positives have a single unit // distributed in proportion between all the columns in the confusion matrix row corresponding to the objects // present in the image. void VocData::calcClassifierConfMatRow(const string& obj_class, const vector& images, const vector& scores, const VocConfCond cond, const float threshold, vector& output_headers, vector& output_values) { CV_Assert(images.size() == scores.size()); // SORT RESULTS BY THEIR SCORE /* 1. store sorting order in 'ranking' */ vector ranking; VocData::getSortOrder(scores, ranking); // CALCULATE CONFUSION MATRIX ENTRIES /* prepare object category headers */ output_headers = m_object_classes; vector(output_headers.size(),0.0).swap(output_values); /* find the index of the target object class in the headers for later use */ int target_idx; { vector::iterator target_idx_it = std::find(output_headers.begin(),output_headers.end(),obj_class); /* if the target class can not be found, raise an exception */ if (target_idx_it == output_headers.end()) { string err_msg = "could not find the target object class '" + obj_class + "' in list of valid classes."; CV_Error(CV_StsError,err_msg.c_str()); } /* convert iterator to index */ target_idx = std::distance(output_headers.begin(),target_idx_it); } /* prepare variables related to calculating recall if using the recall threshold */ int retrieved_hits = 0; int total_relevant = 0; if (cond == CV_VOC_CCOND_RECALL) { vector ground_truth; /* in order to calculate the total number of relevant images for normalization of recall it's necessary to extract the ground truth for the images under consideration */ getClassifierGroundTruth(obj_class, images, ground_truth); total_relevant = std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to(),(char)1)); } /* iterate through images */ vector img_objects; vector img_object_data; int total_images = 0; for (size_t image_idx = 0; image_idx < images.size(); ++image_idx) { /* if using the score as the break condition, check for it now */ if (cond == CV_VOC_CCOND_SCORETHRESH) { if (scores[ranking[image_idx]] <= threshold) break; } /* if continuing for this iteration, increment the image counter for later normalization */ ++total_images; /* for each image retrieve the objects contained */ getObjects(images[ranking[image_idx]].id, img_objects, img_object_data); //check if the tested for object class is present if (getClassifierGroundTruthImage(obj_class, images[ranking[image_idx]].id)) { //if the target class is present, assign fully to the target class element in the confusion matrix row output_values[target_idx] += 1.0; if (cond == CV_VOC_CCOND_RECALL) ++retrieved_hits; } else { //first delete all objects marked as difficult for (size_t obj_idx = 0; obj_idx < img_objects.size(); ++obj_idx) { if (img_object_data[obj_idx].difficult == true) { vector::iterator it1 = img_objects.begin(); std::advance(it1,obj_idx); img_objects.erase(it1); vector::iterator it2 = img_object_data.begin(); std::advance(it2,obj_idx); img_object_data.erase(it2); --obj_idx; } } //if the target class is not present, add values to the confusion matrix row in equal proportions to all objects present in the image for (size_t obj_idx = 0; obj_idx < img_objects.size(); ++obj_idx) { //find the index of the currently considered object vector::iterator class_idx_it = std::find(output_headers.begin(),output_headers.end(),img_objects[obj_idx].object_class); //if the class name extracted from the ground truth file could not be found in the list of available classes, raise an exception if (class_idx_it == output_headers.end()) { string err_msg = "could not find object class '" + img_objects[obj_idx].object_class + "' specified in the ground truth file of '" + images[ranking[image_idx]].id +"'in list of valid classes."; CV_Error(CV_StsError,err_msg.c_str()); } /* convert iterator to index */ int class_idx = std::distance(output_headers.begin(),class_idx_it); //add to confusion matrix row in proportion output_values[class_idx] += 1.f/static_cast(img_objects.size()); } } //check break conditions if breaking on certain level of recall if (cond == CV_VOC_CCOND_RECALL) { if(static_cast(retrieved_hits)/static_cast(total_relevant) >= threshold) break; } } /* finally, normalize confusion matrix row */ for (vector::iterator it = output_values.begin(); it < output_values.end(); ++it) { (*it) /= static_cast(total_images); } } // NOTE: doesn't ignore repeated detections void VocData::calcDetectorConfMatRow(const string& obj_class, const ObdDatasetType dataset, const vector& images, const vector >& scores, const vector >& bounding_boxes, const VocConfCond cond, const float threshold, vector& output_headers, vector& output_values, bool ignore_difficult) { CV_Assert(images.size() == scores.size()); CV_Assert(images.size() == bounding_boxes.size()); //collapse scores and ground_truth vectors into 1D vectors to allow ranking /* define final flat vectors */ vector images_flat; vector scores_flat; vector bounding_boxes_flat; { /* first count how many objects to allow preallocation */ int obj_count = 0; CV_Assert(scores.size() == bounding_boxes.size()); for (size_t img_idx = 0; img_idx < scores.size(); ++img_idx) { CV_Assert(scores[img_idx].size() == bounding_boxes[img_idx].size()); for (size_t obj_idx = 0; obj_idx < scores[img_idx].size(); ++obj_idx) { ++obj_count; } } /* preallocate vectors */ images_flat.resize(obj_count); scores_flat.resize(obj_count); bounding_boxes_flat.resize(obj_count); /* now copy across to preallocated vectors */ int flat_pos = 0; for (size_t img_idx = 0; img_idx < scores.size(); ++img_idx) { for (size_t obj_idx = 0; obj_idx < scores[img_idx].size(); ++obj_idx) { images_flat[flat_pos] = images[img_idx].id; scores_flat[flat_pos] = scores[img_idx][obj_idx]; bounding_boxes_flat[flat_pos] = bounding_boxes[img_idx][obj_idx]; ++flat_pos; } } } // SORT RESULTS BY THEIR SCORE /* 1. store sorting order in 'ranking' */ vector ranking; VocData::getSortOrder(scores_flat, ranking); // CALCULATE CONFUSION MATRIX ENTRIES /* prepare object category headers */ output_headers = m_object_classes; output_headers.push_back("background"); vector(output_headers.size(),0.0).swap(output_values); /* prepare variables related to calculating recall if using the recall threshold */ int retrieved_hits = 0; int total_relevant = 0; if (cond == CV_VOC_CCOND_RECALL) { // vector ground_truth; // /* in order to calculate the total number of relevant images for normalization of recall // it's necessary to extract the ground truth for the images under consideration */ // getClassifierGroundTruth(obj_class, images, ground_truth); // total_relevant = std::count_if(ground_truth.begin(),ground_truth.end(),std::bind2nd(std::equal_to(),true)); /* calculate the total number of objects in the ground truth for the current dataset */ vector gt_images; vector gt_object_present; getClassImages(obj_class, dataset, gt_images, gt_object_present); for (size_t image_idx = 0; image_idx < gt_images.size(); ++image_idx) { vector gt_img_objects; vector gt_img_object_data; getObjects(gt_images[image_idx].id, gt_img_objects, gt_img_object_data); for (size_t obj_idx = 0; obj_idx < gt_img_objects.size(); ++obj_idx) { if (gt_img_objects[obj_idx].object_class == obj_class) { if ((gt_img_object_data[obj_idx].difficult == false) || (ignore_difficult == false)) ++total_relevant; } } } } /* iterate through objects */ vector img_objects; vector img_object_data; int total_objects = 0; for (size_t image_idx = 0; image_idx < images.size(); ++image_idx) { /* if using the score as the break condition, check for it now */ if (cond == CV_VOC_CCOND_SCORETHRESH) { if (scores_flat[ranking[image_idx]] <= threshold) break; } /* increment the image counter for later normalization */ ++total_objects; /* for each image retrieve the objects contained */ getObjects(images[ranking[image_idx]].id, img_objects, img_object_data); //find the ground truth object which has the highest overlap score with the detected object float maxov = -1.0; int max_gt_obj_idx = -1; //-- for each detected object iterate through objects present in ground truth -- for (size_t gt_obj_idx = 0; gt_obj_idx < img_objects.size(); ++gt_obj_idx) { //check difficulty flag if (ignore_difficult || (img_object_data[gt_obj_idx].difficult == false)) { //if the class matches, then check if the detected object and ground truth object overlap by a sufficient margin float ov = testBoundingBoxesForOverlap(bounding_boxes_flat[ranking[image_idx]], img_objects[gt_obj_idx].boundingBox); if (ov != -1.f) { //if all conditions are met store the overlap score and index (as objects are assigned to the highest scoring match) if (ov > maxov) { maxov = ov; max_gt_obj_idx = gt_obj_idx; } } } } //assign to appropriate object class if an object was detected if (maxov != -1.0) { //find the index of the currently considered object vector::iterator class_idx_it = std::find(output_headers.begin(),output_headers.end(),img_objects[max_gt_obj_idx].object_class); //if the class name extracted from the ground truth file could not be found in the list of available classes, raise an exception if (class_idx_it == output_headers.end()) { string err_msg = "could not find object class '" + img_objects[max_gt_obj_idx].object_class + "' specified in the ground truth file of '" + images[ranking[image_idx]].id +"'in list of valid classes."; CV_Error(CV_StsError,err_msg.c_str()); } /* convert iterator to index */ int class_idx = std::distance(output_headers.begin(),class_idx_it); //add to confusion matrix row in proportion output_values[class_idx] += 1.0; } else { //otherwise assign to background class output_values[output_values.size()-1] += 1.0; } //check break conditions if breaking on certain level of recall if (cond == CV_VOC_CCOND_RECALL) { if(static_cast(retrieved_hits)/static_cast(total_relevant) >= threshold) break; } } /* finally, normalize confusion matrix row */ for (vector::iterator it = output_values.begin(); it < output_values.end(); ++it) { (*it) /= static_cast(total_objects); } } //Save Precision-Recall results to a p-r curve in GNUPlot format //-------------------------------------------------------------- //INPUTS: // - output_file The file to which to save the GNUPlot data file. If only a filename is specified, the data // file is saved to the standard VOC results directory. // - precision Vector of precisions as returned from calcClassifier/DetectorPrecRecall // - recall Vector of recalls as returned from calcClassifier/DetectorPrecRecall // - ap ap as returned from calcClassifier/DetectorPrecRecall // - (title) Title to use for the plot (if not specified, just the ap is printed as the title) // This also specifies the filename of the output file if printing to pdf // - (plot_type) Specifies whether to instruct GNUPlot to save to a PDF file (CV_VOC_PLOT_PDF) or directly // to screen (CV_VOC_PLOT_SCREEN) in the datafile //NOTES: // The GNUPlot data file can be executed using GNUPlot from the commandline in the following way: // >> GNUPlot // This will then display the p-r curve on the screen or save it to a pdf file depending on plot_type void VocData::savePrecRecallToGnuplot(const string& output_file, const vector& precision, const vector& recall, const float ap, const string title, const VocPlotType plot_type) { string output_file_std = checkFilenamePathsep(output_file); //if no directory is specified, by default save the output file in the results directory // if (output_file_std.find("/") == output_file_std.npos) // { // output_file_std = m_results_directory + output_file_std; // } std::ofstream plot_file(output_file_std.c_str()); if (plot_file.is_open()) { plot_file << "set xrange [0:1]" << endl; plot_file << "set yrange [0:1]" << endl; plot_file << "set size square" << endl; string title_text = title; if (title_text.size() == 0) title_text = "Precision-Recall Curve"; plot_file << "set title \"" << title_text << " (ap: " << ap << ")\"" << endl; plot_file << "set xlabel \"Recall\"" << endl; plot_file << "set ylabel \"Precision\"" << endl; plot_file << "set style data lines" << endl; plot_file << "set nokey" << endl; if (plot_type == CV_VOC_PLOT_PNG) { plot_file << "set terminal png" << endl; string pdf_filename; if (title.size() != 0) { pdf_filename = title; } else { pdf_filename = "prcurve"; } plot_file << "set out \"" << title << ".png\"" << endl; } plot_file << "plot \"-\" using 1:2" << endl; plot_file << "# X Y" << endl; CV_Assert(precision.size() == recall.size()); for (size_t i = 0; i < precision.size(); ++i) { plot_file << " " << recall[i] << " " << precision[i] << endl; } plot_file << "end" << endl; if (plot_type == CV_VOC_PLOT_SCREEN) { plot_file << "pause -1" << endl; } plot_file.close(); } else { string err_msg = "could not open plot file '" + output_file_std + "' for writing."; CV_Error(CV_StsError,err_msg.c_str()); } } void VocData::readClassifierGroundTruth(const string& obj_class, const ObdDatasetType dataset, vector& images, vector& object_present) { images.clear(); string gtFilename = m_class_imageset_path; gtFilename.replace(gtFilename.find("%s"),2,obj_class); if (dataset == CV_OBD_TRAIN) { gtFilename.replace(gtFilename.find("%s"),2,m_train_set); } else { gtFilename.replace(gtFilename.find("%s"),2,m_test_set); } vector image_codes; readClassifierGroundTruth(gtFilename, image_codes, object_present); convertImageCodesToObdImages(image_codes, images); } void VocData::readClassifierResultsFile(const std:: string& input_file, vector& images, vector& scores) { images.clear(); string input_file_std = checkFilenamePathsep(input_file); //if no directory is specified, by default search for the input file in the results directory // if (input_file_std.find("/") == input_file_std.npos) // { // input_file_std = m_results_directory + input_file_std; // } vector image_codes; readClassifierResultsFile(input_file_std, image_codes, scores); convertImageCodesToObdImages(image_codes, images); } void VocData::readDetectorResultsFile(const string& input_file, vector& images, vector >& scores, vector >& bounding_boxes) { images.clear(); string input_file_std = checkFilenamePathsep(input_file); //if no directory is specified, by default search for the input file in the results directory // if (input_file_std.find("/") == input_file_std.npos) // { // input_file_std = m_results_directory + input_file_std; // } vector image_codes; readDetectorResultsFile(input_file_std, image_codes, scores, bounding_boxes); convertImageCodesToObdImages(image_codes, images); } const vector& VocData::getObjectClasses() { return m_object_classes; } //string VocData::getResultsDirectory() //{ // return m_results_directory; //} //--------------------------------------------------------- // Protected Functions ------------------------------------ //--------------------------------------------------------- string getVocName( const string& vocPath ) { size_t found = vocPath.rfind( '/' ); if( found == string::npos ) { found = vocPath.rfind( '\\' ); if( found == string::npos ) return vocPath; } return vocPath.substr(found + 1, vocPath.size() - found); } void VocData::initVoc( const string& vocPath, const bool useTestDataset ) { initVoc2007to2010( vocPath, useTestDataset ); } //Initialize file paths and settings for the VOC 2010 dataset //----------------------------------------------------------- void VocData::initVoc2007to2010( const string& vocPath, const bool useTestDataset ) { //check format of root directory and modify if necessary m_vocName = getVocName( vocPath ); CV_Assert( !m_vocName.compare("VOC2007") || !m_vocName.compare("VOC2008") || !m_vocName.compare("VOC2009") || !m_vocName.compare("VOC2010") ); m_vocPath = checkFilenamePathsep( vocPath, true ); if (useTestDataset) { m_train_set = "trainval"; m_test_set = "test"; } else { m_train_set = "train"; m_test_set = "val"; } // initialize main classification/detection challenge paths m_annotation_path = m_vocPath + "/Annotations/%s.xml"; m_image_path = m_vocPath + "/JPEGImages/%s.jpg"; m_imageset_path = m_vocPath + "/ImageSets/Main/%s.txt"; m_class_imageset_path = m_vocPath + "/ImageSets/Main/%s_%s.txt"; //define available object_classes for VOC2010 dataset m_object_classes.push_back("aeroplane"); m_object_classes.push_back("bicycle"); m_object_classes.push_back("bird"); m_object_classes.push_back("boat"); m_object_classes.push_back("bottle"); m_object_classes.push_back("bus"); m_object_classes.push_back("car"); m_object_classes.push_back("cat"); m_object_classes.push_back("chair"); m_object_classes.push_back("cow"); m_object_classes.push_back("diningtable"); m_object_classes.push_back("dog"); m_object_classes.push_back("horse"); m_object_classes.push_back("motorbike"); m_object_classes.push_back("person"); m_object_classes.push_back("pottedplant"); m_object_classes.push_back("sheep"); m_object_classes.push_back("sofa"); m_object_classes.push_back("train"); m_object_classes.push_back("tvmonitor"); m_min_overlap = 0.5; //up until VOC 2010, ap was calculated by sampling p-r curve, not taking complete curve m_sampled_ap = ((m_vocName == "VOC2007") || (m_vocName == "VOC2008") || (m_vocName == "VOC2009")); } //Read a VOC classification ground truth text file for a given object class and dataset //------------------------------------------------------------------------------------- //INPUTS: // - filename The path of the text file to read //OUTPUTS: // - image_codes VOC image codes extracted from the GT file in the form 20XX_XXXXXX where the first four // digits specify the year of the dataset, and the last group specifies a unique ID // - object_present For each image in the 'image_codes' array, specifies whether the object class described // in the loaded GT file is present or not void VocData::readClassifierGroundTruth(const string& filename, vector& image_codes, vector& object_present) { image_codes.clear(); object_present.clear(); std::ifstream gtfile(filename.c_str()); if (!gtfile.is_open()) { string err_msg = "could not open VOC ground truth textfile '" + filename + "'."; CV_Error(CV_StsError,err_msg.c_str()); } string line; string image; int obj_present; while (!gtfile.eof()) { std::getline(gtfile,line); std::istringstream iss(line); iss >> image >> obj_present; if (!iss.fail()) { image_codes.push_back(image); object_present.push_back(obj_present == 1); } else { if (!gtfile.eof()) CV_Error(CV_StsParseError,"error parsing VOC ground truth textfile."); } } gtfile.close(); } void VocData::readClassifierResultsFile(const string& input_file, vector& image_codes, vector& scores) { //check if results file exists std::ifstream result_file(input_file.c_str()); if (result_file.is_open()) { string line; string image; float score; //read in the results file while (!result_file.eof()) { std::getline(result_file,line); std::istringstream iss(line); iss >> image >> score; if (!iss.fail()) { image_codes.push_back(image); scores.push_back(score); } else { if(!result_file.eof()) CV_Error(CV_StsParseError,"error parsing VOC classifier results file."); } } result_file.close(); } else { string err_msg = "could not open classifier results file '" + input_file + "' for reading."; CV_Error(CV_StsError,err_msg.c_str()); } } void VocData::readDetectorResultsFile(const string& input_file, vector& image_codes, vector >& scores, vector >& bounding_boxes) { image_codes.clear(); scores.clear(); bounding_boxes.clear(); //check if results file exists std::ifstream result_file(input_file.c_str()); if (result_file.is_open()) { string line; string image; Rect bounding_box; float score; //read in the results file while (!result_file.eof()) { std::getline(result_file,line); std::istringstream iss(line); iss >> image >> score >> bounding_box.x >> bounding_box.y >> bounding_box.width >> bounding_box.height; if (!iss.fail()) { //convert right and bottom positions to width and height bounding_box.width -= bounding_box.x; bounding_box.height -= bounding_box.y; //convert to 0-indexing bounding_box.x -= 1; bounding_box.y -= 1; //store in output vectors /* first check if the current image code has been seen before */ vector::iterator image_codes_it = std::find(image_codes.begin(),image_codes.end(),image); if (image_codes_it == image_codes.end()) { image_codes.push_back(image); vector score_vect(1); score_vect[0] = score; scores.push_back(score_vect); vector bounding_box_vect(1); bounding_box_vect[0] = bounding_box; bounding_boxes.push_back(bounding_box_vect); } else { /* if the image index has been seen before, add the current object below it in the 2D arrays */ int image_idx = std::distance(image_codes.begin(),image_codes_it); scores[image_idx].push_back(score); bounding_boxes[image_idx].push_back(bounding_box); } } else { if(!result_file.eof()) CV_Error(CV_StsParseError,"error parsing VOC detector results file."); } } result_file.close(); } else { string err_msg = "could not open detector results file '" + input_file + "' for reading."; CV_Error(CV_StsError,err_msg.c_str()); } } //Read a VOC annotation xml file for a given image //------------------------------------------------ //INPUTS: // - filename The path of the xml file to read //OUTPUTS: // - objects Array of VocObject describing all object instances present in the given image void VocData::extractVocObjects(const string filename, vector& objects, vector& object_data) { #ifdef PR_DEBUG int block = 1; cout << "SAMPLE VOC OBJECT EXTRACTION for " << filename << ":" << endl; #endif objects.clear(); object_data.clear(); string contents, object_contents, tag_contents; readFileToString(filename, contents); //keep on extracting 'object' blocks until no more can be found if (extractXMLBlock(contents, "annotation", 0, contents) != -1) { int searchpos = 0; searchpos = extractXMLBlock(contents, "object", searchpos, object_contents); while (searchpos != -1) { #ifdef PR_DEBUG cout << "SEARCHPOS:" << searchpos << endl; cout << "start block " << block << " ---------" << endl; cout << object_contents << endl; cout << "end block " << block << " -----------" << endl; ++block; #endif ObdObject object; VocObjectData object_d; //object class ------------- if (extractXMLBlock(object_contents, "name", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing tag in object definition of '" + filename + "'"); object.object_class.swap(tag_contents); //object bounding box ------------- int xmax, xmin, ymax, ymin; if (extractXMLBlock(object_contents, "xmax", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing tag in object definition of '" + filename + "'"); xmax = stringToInteger(tag_contents); if (extractXMLBlock(object_contents, "xmin", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing tag in object definition of '" + filename + "'"); xmin = stringToInteger(tag_contents); if (extractXMLBlock(object_contents, "ymax", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing tag in object definition of '" + filename + "'"); ymax = stringToInteger(tag_contents); if (extractXMLBlock(object_contents, "ymin", 0, tag_contents) == -1) CV_Error(CV_StsError,"missing tag in object definition of '" + filename + "'"); ymin = stringToInteger(tag_contents); object.boundingBox.x = xmin-1; //convert to 0-based indexing object.boundingBox.width = xmax - xmin; object.boundingBox.y = ymin-1; object.boundingBox.height = ymax - ymin; CV_Assert(xmin != 0); CV_Assert(xmax > xmin); CV_Assert(ymin != 0); CV_Assert(ymax > ymin); //object tags ------------- if (extractXMLBlock(object_contents, "difficult", 0, tag_contents) != -1) { object_d.difficult = (tag_contents == "1"); } else object_d.difficult = false; if (extractXMLBlock(object_contents, "occluded", 0, tag_contents) != -1) { object_d.occluded = (tag_contents == "1"); } else object_d.occluded = false; if (extractXMLBlock(object_contents, "truncated", 0, tag_contents) != -1) { object_d.truncated = (tag_contents == "1"); } else object_d.truncated = false; if (extractXMLBlock(object_contents, "pose", 0, tag_contents) != -1) { if (tag_contents == "Frontal") object_d.pose = CV_VOC_POSE_FRONTAL; if (tag_contents == "Rear") object_d.pose = CV_VOC_POSE_REAR; if (tag_contents == "Left") object_d.pose = CV_VOC_POSE_LEFT; if (tag_contents == "Right") object_d.pose = CV_VOC_POSE_RIGHT; } //add to array of objects objects.push_back(object); object_data.push_back(object_d); //extract next 'object' block from file if it exists searchpos = extractXMLBlock(contents, "object", searchpos, object_contents); } } } //Converts an image identifier string in the format YYYY_XXXXXX to a single index integer of form XXXXXXYYYY //where Y represents a year and returns the image path //---------------------------------------------------------------------------------------------------------- string VocData::getImagePath(const string& input_str) { string path = m_image_path; path.replace(path.find("%s"),2,input_str); return path; } //Tests two boundary boxes for overlap (using the intersection over union metric) and returns the overlap if the objects //defined by the two bounding boxes are considered to be matched according to the criterion outlined in //the VOC documentation [namely intersection/union > some threshold] otherwise returns -1.0 (no match) //---------------------------------------------------------------------------------------------------------- float VocData::testBoundingBoxesForOverlap(const Rect detection, const Rect ground_truth) { int detection_x2 = detection.x + detection.width; int detection_y2 = detection.y + detection.height; int ground_truth_x2 = ground_truth.x + ground_truth.width; int ground_truth_y2 = ground_truth.y + ground_truth.height; //first calculate the boundaries of the intersection of the rectangles int intersection_x = std::max(detection.x, ground_truth.x); //rightmost left int intersection_y = std::max(detection.y, ground_truth.y); //bottommost top int intersection_x2 = std::min(detection_x2, ground_truth_x2); //leftmost right int intersection_y2 = std::min(detection_y2, ground_truth_y2); //topmost bottom //then calculate the width and height of the intersection rect int intersection_width = intersection_x2 - intersection_x + 1; int intersection_height = intersection_y2 - intersection_y + 1; //if there is no overlap then return false straight away if ((intersection_width <= 0) || (intersection_height <= 0)) return -1.0; //otherwise calculate the intersection int intersection_area = intersection_width*intersection_height; //now calculate the union int union_area = (detection.width+1)*(detection.height+1) + (ground_truth.width+1)*(ground_truth.height+1) - intersection_area; //calculate the intersection over union and use as threshold as per VOC documentation float overlap = static_cast(intersection_area)/static_cast(union_area); if (overlap > m_min_overlap) { return overlap; } else { return -1.0; } } //Extracts the object class and dataset from the filename of a VOC standard results text file, which takes //the format 'comp_{cls/det}__.txt' //---------------------------------------------------------------------------------------------------------- void VocData::extractDataFromResultsFilename(const string& input_file, string& class_name, string& dataset_name) { string input_file_std = checkFilenamePathsep(input_file); size_t fnamestart = input_file_std.rfind("/"); size_t fnameend = input_file_std.rfind(".txt"); if ((fnamestart == input_file_std.npos) || (fnameend == input_file_std.npos)) CV_Error(CV_StsError,"Could not extract filename of results file."); ++fnamestart; if (fnamestart >= fnameend) CV_Error(CV_StsError,"Could not extract filename of results file."); //extract dataset and class names, triggering exception if the filename format is not correct string filename = input_file_std.substr(fnamestart, fnameend-fnamestart); size_t datasetstart = filename.find("_"); datasetstart = filename.find("_",datasetstart+1); size_t classstart = filename.find("_",datasetstart+1); //allow for appended index after a further '_' by discarding this part if it exists size_t classend = filename.find("_",classstart+1); if (classend == filename.npos) classend = filename.size(); if ((datasetstart == filename.npos) || (classstart == filename.npos)) CV_Error(CV_StsError,"Error parsing results filename. Is it in standard format of 'comp_{cls/det}__.txt'?"); ++datasetstart; ++classstart; if (((datasetstart-classstart) < 1) || ((classend-datasetstart) < 1)) CV_Error(CV_StsError,"Error parsing results filename. Is it in standard format of 'comp_{cls/det}__.txt'?"); dataset_name = filename.substr(datasetstart,classstart-datasetstart-1); class_name = filename.substr(classstart,classend-classstart); } bool VocData::getClassifierGroundTruthImage(const string& obj_class, const string& id) { /* if the classifier ground truth data for all images of the current class has not been loaded yet, load it now */ if (m_classifier_gt_all_ids.empty() || (m_classifier_gt_class != obj_class)) { m_classifier_gt_all_ids.clear(); m_classifier_gt_all_present.clear(); m_classifier_gt_class = obj_class; for (int i=0; i<2; ++i) //run twice (once over test set and once over training set) { //generate the filename of the classification ground-truth textfile for the object class string gtFilename = m_class_imageset_path; gtFilename.replace(gtFilename.find("%s"),2,obj_class); if (i == 0) { gtFilename.replace(gtFilename.find("%s"),2,m_train_set); } else { gtFilename.replace(gtFilename.find("%s"),2,m_test_set); } //parse the ground truth file, storing in two separate vectors //for the image code and the ground truth value vector image_codes; vector object_present; readClassifierGroundTruth(gtFilename, image_codes, object_present); m_classifier_gt_all_ids.insert(m_classifier_gt_all_ids.end(),image_codes.begin(),image_codes.end()); m_classifier_gt_all_present.insert(m_classifier_gt_all_present.end(),object_present.begin(),object_present.end()); CV_Assert(m_classifier_gt_all_ids.size() == m_classifier_gt_all_present.size()); } } //search for the image code vector::iterator it = find (m_classifier_gt_all_ids.begin(), m_classifier_gt_all_ids.end(), id); if (it != m_classifier_gt_all_ids.end()) { //image found, so return corresponding ground truth return m_classifier_gt_all_present[std::distance(m_classifier_gt_all_ids.begin(),it)] != 0; } else { string err_msg = "could not find classifier ground truth for image '" + id + "' and class '" + obj_class + "'"; CV_Error(CV_StsError,err_msg.c_str()); } return true; } //------------------------------------------------------------------- // Protected Functions (utility) ------------------------------------ //------------------------------------------------------------------- //returns a vector containing indexes of the input vector in sorted ascending/descending order void VocData::getSortOrder(const vector& values, vector& order, bool descending) { /* 1. store sorting order in 'order_pair' */ vector::const_iterator> > order_pair(values.size()); size_t n = 0; for (vector::const_iterator it = values.begin(); it != values.end(); ++it, ++n) order_pair[n] = make_pair(n, it); std::sort(order_pair.begin(),order_pair.end(),orderingSorter()); if (descending == false) std::reverse(order_pair.begin(),order_pair.end()); vector(order_pair.size()).swap(order); for (size_t i = 0; i < order_pair.size(); ++i) { order[i] = order_pair[i].first; } } void VocData::readFileToString(const string filename, string& file_contents) { std::ifstream ifs(filename.c_str()); if (ifs == false) CV_Error(CV_StsError,"could not open text file"); stringstream oss; oss << ifs.rdbuf(); file_contents = oss.str(); } int VocData::stringToInteger(const string input_str) { int result; stringstream ss(input_str); if ((ss >> result).fail()) { CV_Error(CV_StsBadArg,"could not perform string to integer conversion"); } return result; } string VocData::integerToString(const int input_int) { string result; stringstream ss; if ((ss << input_int).fail()) { CV_Error(CV_StsBadArg,"could not perform integer to string conversion"); } result = ss.str(); return result; } string VocData::checkFilenamePathsep( const string filename, bool add_trailing_slash ) { string filename_new = filename; size_t pos = filename_new.find("\\\\"); while (pos != filename_new.npos) { filename_new.replace(pos,2,"/"); pos = filename_new.find("\\\\", pos); } pos = filename_new.find("\\"); while (pos != filename_new.npos) { filename_new.replace(pos,2,"/"); pos = filename_new.find("\\", pos); } if (add_trailing_slash) { //add training slash if this is missing if (filename_new.rfind("/") != filename_new.length()-1) filename_new += "/"; } return filename_new; } void VocData::convertImageCodesToObdImages(const vector& image_codes, vector& images) { images.clear(); images.reserve(image_codes.size()); string path; //transfer to output arrays for (size_t i = 0; i < image_codes.size(); ++i) { //generate image path and indices from extracted string code path = getImagePath(image_codes[i]); images.push_back(ObdImage(image_codes[i], path)); } } //Extract text from within a given tag from an XML file //----------------------------------------------------- //INPUTS: // - src XML source file // - tag XML tag delimiting block to extract // - searchpos position within src at which to start search //OUTPUTS: // - tag_contents text extracted between and tags //RETURN VALUE: // - the position of the final character extracted in tag_contents within src // (can be used to call extractXMLBlock recursively to extract multiple blocks) // returns -1 if the tag could not be found int VocData::extractXMLBlock(const string src, const string tag, const int searchpos, string& tag_contents) { size_t startpos, next_startpos, endpos; int embed_count = 1; //find position of opening tag startpos = src.find("<" + tag + ">", searchpos); if (startpos == string::npos) return -1; //initialize endpos - // start searching for end tag anywhere after opening tag endpos = startpos; //find position of next opening tag next_startpos = src.find("<" + tag + ">", startpos+1); //match opening tags with closing tags, and only //accept final closing tag of same level as original //opening tag while (embed_count > 0) { endpos = src.find("", endpos+1); if (endpos == string::npos) return -1; //the next code is only executed if there are embedded tags with the same name if (next_startpos != string::npos) { while (next_startpos", next_startpos+1); if (next_startpos == string::npos) break; } } //passing end tag so decrement nesting level --embed_count; } //finally, extract the tag region startpos += tag.length() + 2; if (startpos > src.length()) return -1; if (endpos > src.length()) return -1; tag_contents = src.substr(startpos,endpos-startpos); return static_cast(endpos); } /****************************************************************************************\ * Sample on image classification * \****************************************************************************************/ // // This part of the code was a little refactor // struct DDMParams { DDMParams() : detectorType("SURF"), descriptorType("SURF"), matcherType("BruteForce") {} DDMParams( const string _detectorType, const string _descriptorType, const string& _matcherType ) : detectorType(_detectorType), descriptorType(_descriptorType), matcherType(_matcherType){} void read( const FileNode& fn ) { fn["detectorType"] >> detectorType; fn["descriptorType"] >> descriptorType; fn["matcherType"] >> matcherType; } void write( FileStorage& fs ) const { fs << "detectorType" << detectorType; fs << "descriptorType" << descriptorType; fs << "matcherType" << matcherType; } void print() const { cout << "detectorType: " << detectorType << endl; cout << "descriptorType: " << descriptorType << endl; cout << "matcherType: " << matcherType << endl; } string detectorType; string descriptorType; string matcherType; }; struct VocabTrainParams { VocabTrainParams() : trainObjClass("chair"), vocabSize(1000), memoryUse(200), descProportion(0.3f) {} VocabTrainParams( const string _trainObjClass, size_t _vocabSize, size_t _memoryUse, float _descProportion ) : trainObjClass(_trainObjClass), vocabSize(_vocabSize), memoryUse(_memoryUse), descProportion(_descProportion) {} void read( const FileNode& fn ) { fn["trainObjClass"] >> trainObjClass; fn["vocabSize"] >> vocabSize; fn["memoryUse"] >> memoryUse; fn["descProportion"] >> descProportion; } void write( FileStorage& fs ) const { fs << "trainObjClass" << trainObjClass; fs << "vocabSize" << vocabSize; fs << "memoryUse" << memoryUse; fs << "descProportion" << descProportion; } void print() const { cout << "trainObjClass: " << trainObjClass << endl; cout << "vocabSize: " << vocabSize << endl; cout << "memoryUse: " << memoryUse << endl; cout << "descProportion: " << descProportion << endl; } string trainObjClass; // Object class used for training visual vocabulary. // It shouldn't matter which object class is specified here - visual vocab will still be the same. int vocabSize; //number of visual words in vocabulary to train int memoryUse; // Memory to preallocate (in MB) when training vocab. // Change this depending on the size of the dataset/available memory. float descProportion; // Specifies the number of descriptors to use from each image as a proportion of the total num descs. }; struct SVMTrainParamsExt { SVMTrainParamsExt() : descPercent(0.5f), targetRatio(0.4f), balanceClasses(true) {} SVMTrainParamsExt( float _descPercent, float _targetRatio, bool _balanceClasses ) : descPercent(_descPercent), targetRatio(_targetRatio), balanceClasses(_balanceClasses) {} void read( const FileNode& fn ) { fn["descPercent"] >> descPercent; fn["targetRatio"] >> targetRatio; fn["balanceClasses"] >> balanceClasses; } void write( FileStorage& fs ) const { fs << "descPercent" << descPercent; fs << "targetRatio" << targetRatio; fs << "balanceClasses" << balanceClasses; } void print() const { cout << "descPercent: " << descPercent << endl; cout << "targetRatio: " << targetRatio << endl; cout << "balanceClasses: " << balanceClasses << endl; } float descPercent; // Percentage of extracted descriptors to use for training. float targetRatio; // Try to get this ratio of positive to negative samples (minimum). bool balanceClasses; // Balance class weights by number of samples in each (if true cSvmTrainTargetRatio is ignored). }; void readUsedParams( const FileNode& fn, string& vocName, DDMParams& ddmParams, VocabTrainParams& vocabTrainParams, SVMTrainParamsExt& svmTrainParamsExt ) { fn["vocName"] >> vocName; FileNode currFn = fn; currFn = fn["ddmParams"]; ddmParams.read( currFn ); currFn = fn["vocabTrainParams"]; vocabTrainParams.read( currFn ); currFn = fn["svmTrainParamsExt"]; svmTrainParamsExt.read( currFn ); } void writeUsedParams( FileStorage& fs, const string& vocName, const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams, const SVMTrainParamsExt& svmTrainParamsExt ) { fs << "vocName" << vocName; fs << "ddmParams" << "{"; ddmParams.write(fs); fs << "}"; fs << "vocabTrainParams" << "{"; vocabTrainParams.write(fs); fs << "}"; fs << "svmTrainParamsExt" << "{"; svmTrainParamsExt.write(fs); fs << "}"; } void printUsedParams( const string& vocPath, const string& resDir, const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams, const SVMTrainParamsExt& svmTrainParamsExt ) { cout << "CURRENT CONFIGURATION" << endl; cout << "----------------------------------------------------------------" << endl; cout << "vocPath: " << vocPath << endl; cout << "resDir: " << resDir << endl; cout << endl; ddmParams.print(); cout << endl; vocabTrainParams.print(); cout << endl; svmTrainParamsExt.print(); cout << "----------------------------------------------------------------" << endl << endl; } bool readVocabulary( const string& filename, Mat& vocabulary ) { cout << "Reading vocabulary..."; FileStorage fs( filename, FileStorage::READ ); if( fs.isOpened() ) { fs["vocabulary"] >> vocabulary; cout << "done" << endl; return true; } return false; } bool writeVocabulary( const string& filename, const Mat& vocabulary ) { cout << "Saving vocabulary..." << endl; FileStorage fs( filename, FileStorage::WRITE ); if( fs.isOpened() ) { fs << "vocabulary" << vocabulary; return true; } return false; } Mat trainVocabulary( const string& filename, VocData& vocData, const VocabTrainParams& trainParams, const Ptr& fdetector, const Ptr& dextractor ) { Mat vocabulary; if( !readVocabulary( filename, vocabulary) ) { CV_Assert( dextractor->descriptorType() == CV_32FC1 ); const int descByteSize = dextractor->descriptorSize()*4; const int maxDescCount = (trainParams.memoryUse * 1048576) / descByteSize; // Total number of descs to use for training. cout << "Extracting VOC data..." << endl; vector images; vector objectPresent; vocData.getClassImages( trainParams.trainObjClass, CV_OBD_TRAIN, images, objectPresent ); cout << "Computing descriptors..." << endl; RNG& rng = theRNG(); TermCriteria terminate_criterion; terminate_criterion.epsilon = FLT_EPSILON; BOWKMeansTrainer bowTrainer( trainParams.vocabSize, terminate_criterion, 3, KMEANS_PP_CENTERS ); while( images.size() > 0 ) { if( bowTrainer.descripotorsCount() >= maxDescCount ) { assert( bowTrainer.descripotorsCount() == maxDescCount ); #ifdef DEBUG_DESC_PROGRESS cout << "Breaking due to full memory ( descriptors count = " << bowTrainer.descripotorsCount() << "; descriptor size in bytes = " << descByteSize << "; all used memory = " << bowTrainer.descripotorsCount()*descByteSize << endl; #endif break; } // Randomly pick an image from the dataset which hasn't yet been seen // and compute the descriptors from that image. int randImgIdx = rng( images.size() ); Mat colorImage = imread( images[randImgIdx].path ); vector imageKeypoints; fdetector->detect( colorImage, imageKeypoints ); Mat imageDescriptors; dextractor->compute( colorImage, imageKeypoints, imageDescriptors ); //check that there were descriptors calculated for the current image if( !imageDescriptors.empty() ) { int descCount = imageDescriptors.rows; // Extract trainParams.descProportion descriptors from the image, breaking if the 'allDescriptors' matrix becomes full int descsToExtract = static_cast(trainParams.descProportion * static_cast(descCount)); // Fill mask of used descriptors vector usedMask( descCount, false ); fill( usedMask.begin(), usedMask.begin() + descsToExtract, true ); for( int i = 0; i < descCount; i++ ) { int i1 = rng(descCount), i2 = rng(descCount); char tmp = usedMask[i1]; usedMask[i1] = usedMask[i2]; usedMask[i2] = tmp; } for( int i = 0; i < descCount; i++ ) { if( usedMask[i] && bowTrainer.descripotorsCount() < maxDescCount ) bowTrainer.add( imageDescriptors.row(i) ); } } #ifdef DEBUG_DESC_PROGRESS cout << images.size() << " images left, " << images[randImgIdx].id << " processed - " <(bowTrainer.descripotorsCount())/static_cast(maxDescCount))*100.0) << " % memory used" << ( imageDescriptors.empty() ? " -> no descriptors extracted, skipping" : "") << endl; #endif // Delete the current element from images so it is not added again images.erase( images.begin() + randImgIdx ); } cout << "Maximum allowed descriptor count: " << maxDescCount << ", Actual descriptor count: " << bowTrainer.descripotorsCount() << endl; cout << "Training vocabulary..." << endl; vocabulary = bowTrainer.cluster(); if( !writeVocabulary(filename, vocabulary) ) { cout << "Error: file " << filename << " can not be opened to write" << endl; exit(-1); } } return vocabulary; } bool readBowImageDescriptor( const string& file, Mat& bowImageDescriptor ) { FileStorage fs( file, FileStorage::READ ); if( fs.isOpened() ) { fs["imageDescriptor"] >> bowImageDescriptor; return true; } return false; } bool writeBowImageDescriptor( const string& file, const Mat& bowImageDescriptor ) { FileStorage fs( file, FileStorage::WRITE ); if( fs.isOpened() ) { fs << "imageDescriptor" << bowImageDescriptor; return true; } return false; } // Load in the bag of words vectors for a set of images, from file if possible void calculateImageDescriptors( const vector& images, vector& imageDescriptors, Ptr& bowExtractor, const Ptr& fdetector, const string& resPath ) { CV_Assert( !bowExtractor->getVocabulary().empty() ); imageDescriptors.resize( images.size() ); for( size_t i = 0; i < images.size(); i++ ) { string filename = resPath + bowImageDescriptorsDir + "/" + images[i].id + ".xml.gz"; if( readBowImageDescriptor( filename, imageDescriptors[i] ) ) { #ifdef DEBUG_DESC_PROGRESS cout << "Loaded bag of word vector for image " << i+1 << " of " << images.size() << " (" << images[i].id << ")" << endl; #endif } else { Mat colorImage = imread( images[i].path ); #ifdef DEBUG_DESC_PROGRESS cout << "Computing descriptors for image " << i+1 << " of " << images.size() << " (" << images[i].id << ")" << flush; #endif vector keypoints; fdetector->detect( colorImage, keypoints ); #ifdef DEBUG_DESC_PROGRESS cout << " + generating BoW vector" << std::flush; #endif bowExtractor->compute( colorImage, keypoints, imageDescriptors[i] ); #ifdef DEBUG_DESC_PROGRESS cout << " ...DONE " << static_cast(static_cast(i+1)/static_cast(images.size())*100.0) << " % complete" << endl; #endif if( !imageDescriptors[i].empty() ) { if( !writeBowImageDescriptor( filename, imageDescriptors[i] ) ) { cout << "Error: file " << filename << "can not be opened to write bow image descriptor" << endl; exit(-1); } } } } } void removeEmptyBowImageDescriptors( vector& images, vector& bowImageDescriptors, vector& objectPresent ) { CV_Assert( !images.empty() ); for( int i = (int)images.size() - 1; i >= 0; i-- ) { bool res = bowImageDescriptors[i].empty(); if( res ) { cout << "Removing image " << images[i].id << " due to no descriptors..." << endl; images.erase( images.begin() + i ); bowImageDescriptors.erase( bowImageDescriptors.begin() + i ); objectPresent.erase( objectPresent.begin() + i ); } } } void removeBowImageDescriptorsByCount( vector& images, vector bowImageDescriptors, vector objectPresent, const SVMTrainParamsExt& svmParamsExt, int descsToDelete ) { RNG& rng = theRNG(); int pos_ex = std::count( objectPresent.begin(), objectPresent.end(), (char)1 ); int neg_ex = std::count( objectPresent.begin(), objectPresent.end(), (char)0 ); while( descsToDelete != 0 ) { int randIdx = rng(images.size()); // Prefer positive training examples according to svmParamsExt.targetRatio if required if( objectPresent[randIdx] ) { if( (static_cast(pos_ex)/static_cast(neg_ex+pos_ex) < svmParamsExt.targetRatio) && (neg_ex > 0) && (svmParamsExt.balanceClasses == false) ) { continue; } else { pos_ex--; } } else { neg_ex--; } images.erase( images.begin() + randIdx ); bowImageDescriptors.erase( bowImageDescriptors.begin() + randIdx ); objectPresent.erase( objectPresent.begin() + randIdx ); descsToDelete--; } CV_Assert( bowImageDescriptors.size() == objectPresent.size() ); } void setSVMParams( CvSVMParams& svmParams, CvMat& class_wts_cv, const Mat& responses, bool balanceClasses ) { int pos_ex = countNonZero(responses == 1); int neg_ex = countNonZero(responses == -1); cout << pos_ex << " positive training samples; " << neg_ex << " negative training samples" << endl; svmParams.svm_type = CvSVM::C_SVC; svmParams.kernel_type = CvSVM::RBF; if( balanceClasses ) { Mat class_wts( 2, 1, CV_32FC1 ); // The first training sample determines the '+1' class internally, even if it is negative, // so store whether this is the case so that the class weights can be reversed accordingly. bool reversed_classes = (responses.at(0) < 0.f); if( reversed_classes == false ) { class_wts.at(0) = static_cast(pos_ex)/static_cast(pos_ex+neg_ex); // weighting for costs of positive class + 1 (i.e. cost of false positive - larger gives greater cost) class_wts.at(1) = static_cast(neg_ex)/static_cast(pos_ex+neg_ex); // weighting for costs of negative class - 1 (i.e. cost of false negative) } else { class_wts.at(0) = static_cast(neg_ex)/static_cast(pos_ex+neg_ex); class_wts.at(1) = static_cast(pos_ex)/static_cast(pos_ex+neg_ex); } class_wts_cv = class_wts; svmParams.class_weights = &class_wts_cv; } } void setSVMTrainAutoParams( CvParamGrid& c_grid, CvParamGrid& gamma_grid, CvParamGrid& p_grid, CvParamGrid& nu_grid, CvParamGrid& coef_grid, CvParamGrid& degree_grid ) { c_grid = CvSVM::get_default_grid(CvSVM::C); gamma_grid = CvSVM::get_default_grid(CvSVM::GAMMA); p_grid = CvSVM::get_default_grid(CvSVM::P); p_grid.step = 0; nu_grid = CvSVM::get_default_grid(CvSVM::NU); nu_grid.step = 0; coef_grid = CvSVM::get_default_grid(CvSVM::COEF); coef_grid.step = 0; degree_grid = CvSVM::get_default_grid(CvSVM::DEGREE); degree_grid.step = 0; } void trainSVMClassifier( CvSVM& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData, Ptr& bowExtractor, const Ptr& fdetector, const string& resPath ) { /* first check if a previously trained svm for the current class has been saved to file */ string svmFilename = resPath + svmsDir + "/" + objClassName + ".xml.gz"; FileStorage fs( svmFilename, FileStorage::READ); if( fs.isOpened() ) { cout << "*** LOADING SVM CLASSIFIER FOR CLASS " << objClassName << " ***" << endl; svm.load( svmFilename.c_str() ); } else { cout << "*** TRAINING CLASSIFIER FOR CLASS " << objClassName << " ***" << endl; cout << "CALCULATING BOW VECTORS FOR TRAINING SET OF " << objClassName << "..." << endl; // Get classification ground truth for images in the training set vector images; vector bowImageDescriptors; vector objectPresent; vocData.getClassImages( objClassName, CV_OBD_TRAIN, images, objectPresent ); // Compute the bag of words vector for each image in the training set. calculateImageDescriptors( images, bowImageDescriptors, bowExtractor, fdetector, resPath ); // Remove any images for which descriptors could not be calculated removeEmptyBowImageDescriptors( images, bowImageDescriptors, objectPresent ); CV_Assert( svmParamsExt.descPercent > 0.f && svmParamsExt.descPercent <= 1.f ); if( svmParamsExt.descPercent < 1.f ) { int descsToDelete = static_cast(static_cast(images.size())*(1.0-svmParamsExt.descPercent)); cout << "Using " << (images.size() - descsToDelete) << " of " << images.size() << " descriptors for training (" << svmParamsExt.descPercent*100.0 << " %)" << endl; removeBowImageDescriptorsByCount( images, bowImageDescriptors, objectPresent, svmParamsExt, descsToDelete ); } // Prepare the input matrices for SVM training. Mat trainData( images.size(), bowExtractor->getVocabulary().rows, CV_32FC1 ); Mat responses( images.size(), 1, CV_32SC1 ); // Transfer bag of words vectors and responses across to the training data matrices for( size_t imageIdx = 0; imageIdx < images.size(); imageIdx++ ) { // Transfer image descriptor (bag of words vector) to training data matrix Mat submat = trainData.row(imageIdx); if( bowImageDescriptors[imageIdx].cols != bowExtractor->descriptorSize() ) { cout << "Error: computed bow image descriptor size " << bowImageDescriptors[imageIdx].cols << " differs from vocabulary size" << bowExtractor->getVocabulary().cols << endl; exit(-1); } bowImageDescriptors[imageIdx].copyTo( submat ); // Set response value responses.at(imageIdx) = objectPresent[imageIdx] ? 1 : -1; } cout << "TRAINING SVM FOR CLASS ..." << objClassName << "..." << endl; CvSVMParams svmParams; CvMat class_wts_cv; setSVMParams( svmParams, class_wts_cv, responses, svmParamsExt.balanceClasses ); CvParamGrid c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid; setSVMTrainAutoParams( c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid ); svm.train_auto( trainData, responses, Mat(), Mat(), svmParams, 10, c_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid ); cout << "SVM TRAINING FOR CLASS " << objClassName << " COMPLETED" << endl; svm.save( svmFilename.c_str() ); cout << "SAVED CLASSIFIER TO FILE" << endl; } } void computeConfidences( CvSVM& svm, const string& objClassName, VocData& vocData, Ptr& bowExtractor, const Ptr& fdetector, const string& resPath ) { cout << "*** CALCULATING CONFIDENCES FOR CLASS " << objClassName << " ***" << endl; cout << "CALCULATING BOW VECTORS FOR TEST SET OF " << objClassName << "..." << endl; // Get classification ground truth for images in the test set vector images; vector bowImageDescriptors; vector objectPresent; vocData.getClassImages( objClassName, CV_OBD_TEST, images, objectPresent ); // Compute the bag of words vector for each image in the test set calculateImageDescriptors( images, bowImageDescriptors, bowExtractor, fdetector, resPath ); // Remove any images for which descriptors could not be calculated removeEmptyBowImageDescriptors( images, bowImageDescriptors, objectPresent); // Use the bag of words vectors to calculate classifier output for each image in test set cout << "CALCULATING CONFIDENCE SCORES FOR CLASS " << objClassName << "..." << endl; vector confidences( images.size() ); float signMul = 1.f; for( size_t imageIdx = 0; imageIdx < images.size(); imageIdx++ ) { if( imageIdx == 0 ) { // In the first iteration, determine the sign of the positive class float classVal = confidences[imageIdx] = svm.predict( bowImageDescriptors[imageIdx], false ); float scoreVal = confidences[imageIdx] = svm.predict( bowImageDescriptors[imageIdx], true ); signMul = (classVal < 0) == (scoreVal < 0) ? 1.f : -1.f; } // svm output of decision function confidences[imageIdx] = signMul * svm.predict( bowImageDescriptors[imageIdx], true ); } cout << "WRITING QUERY RESULTS TO VOC RESULTS FILE FOR CLASS " << objClassName << "..." << endl; vocData.writeClassifierResultsFile( resPath + plotsDir, objClassName, CV_OBD_TEST, images, confidences, 1, true ); cout << "DONE - " << objClassName << endl; cout << "---------------------------------------------------------------" << endl; } void computeGnuPlotOutput( const string& resPath, const string& objClassName, VocData& vocData ) { vector precision, recall; float ap; const string resultFile = vocData.getResultsFilename( objClassName, CV_VOC_TASK_CLASSIFICATION, CV_OBD_TEST); const string plotFile = resultFile.substr(0, resultFile.size()-4) + ".plt"; cout << "Calculating precision recall curve for class '" < featureDetector = FeatureDetector::create( ddmParams.detectorType ); Ptr descExtractor = DescriptorExtractor::create( ddmParams.descriptorType ); Ptr bowExtractor; if( featureDetector.empty() || descExtractor.empty() ) { cout << "featureDetector or descExtractor was not created" << endl; return -1; } { Ptr descMatcher = DescriptorMatcher::create( ddmParams.matcherType ); if( featureDetector.empty() || descExtractor.empty() || descMatcher.empty() ) { cout << "descMatcher was not created" << endl; return -1; } bowExtractor = new BOWImgDescriptorExtractor( descExtractor, descMatcher ); } // Print configuration to screen printUsedParams( vocPath, resPath, ddmParams, vocabTrainParams, svmTrainParamsExt ); // Create object to work with VOC VocData vocData( vocPath, false ); // 1. Train visual word vocabulary if a pre-calculated vocabulary file doesn't already exist from previous run Mat vocabulary = trainVocabulary( resPath + "/" + vocabularyFile, vocData, vocabTrainParams, featureDetector, descExtractor ); bowExtractor->setVocabulary( vocabulary ); // 2. Train a classifier and run a sample query for each object class const vector& objClasses = vocData.getObjectClasses(); // object class list for( size_t classIdx = 0; classIdx < objClasses.size(); ++classIdx ) { // Train a classifier on train dataset CvSVM svm; trainSVMClassifier( svm, svmTrainParamsExt, objClasses[classIdx], vocData, bowExtractor, featureDetector, resPath ); // Now use the classifier over all images on the test dataset and rank according to score order // also calculating precision-recall etc. computeConfidences( svm, objClasses[classIdx], vocData, bowExtractor, featureDetector, resPath ); // Calculate precision/recall/ap and use GNUPlot to output to a pdf file computeGnuPlotOutput( resPath, objClasses[classIdx], vocData ); } return 0; }