#include "cv.h" // include standard OpenCV headers, same as before #include "highgui.h" #include using namespace cv; // all the new API is put into "cv" namespace. Export its content #if 0 // enable/disable use of mixed API in the code below. #define DEMO_MIXED_API_USE 1 int main( int argc, char** argv ) { const char* imagename = argc > 1 ? argv[1] : "lena.jpg"; #if DEMO_MIXED_API_USE Ptr iplimg = cvLoadImage(imagename); // Ptr is safe ref-conting pointer class if(iplimg.empty()) { fprintf(stderr, "Can not load image %s\n", imagename); return -1; } Mat img(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert // between the old and the new data structures (by default, only the header // is converted, while the data is shared) #else Mat img = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function if(img.empty()) { fprintf(stderr, "Can not load image %s\n", imagename); return -1; } #endif if( !img.data ) // check if the image has been loaded properly return -1; Mat img_yuv; cvtColor(img, img_yuv, CV_BGR2YCrCb); // convert image to YUV color space. The output image will be created automatically vector planes; // Vector is template vector class, similar to STL's vector. It can store matrices too. split(img_yuv, planes); // split the image into separate color planes #if 1 // method 1. process Y plane using an iterator MatIterator_ it = planes[0].begin(), it_end = planes[0].end(); for(; it != it_end; ++it) { double v = *it*1.7 + rand()%21-10; *it = saturate_cast(v*v/255.); } // method 2. process the first chroma plane using pre-stored row pointer. // method 3. process the second chroma plane using individual element access for( int y = 0; y < img_yuv.rows; y++ ) { uchar* Uptr = planes[1].ptr(y); for( int x = 0; x < img_yuv.cols; x++ ) { Uptr[x] = saturate_cast((Uptr[x]-128)/2 + 128); uchar& Vxy = planes[2].at(y, x); Vxy = saturate_cast((Vxy-128)/2 + 128); } } #else Mat noise(img.size(), CV_8U); // another Mat constructor; allocates a matrix of the specified size and type randn(noise, Scalar::all(128), Scalar::all(20)); // fills the matrix with normally distributed random values; // there is also randu() for uniformly distributed random number generation GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5); // blur the noise a bit, kernel size is 3x3 and both sigma's are set to 0.5 const double brightness_gain = 0; const double contrast_gain = 1.7; #if DEMO_MIXED_API_USE // it's easy to pass the new matrices to the functions that only work with IplImage or CvMat: // step 1) - convert the headers, data will not be copied IplImage cv_planes_0 = planes[0], cv_noise = noise; // step 2) call the function; do not forget unary "&" to form pointers cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0); #else addWeighted(planes[0], contrast_gain, noise, 1, -128 + brightness_gain, planes[0]); #endif const double color_scale = 0.5; // Mat::convertTo() replaces cvConvertScale. One must explicitly specify the output matrix type (we keep it intact - planes[1].type()) planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale)); // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here). // This expression will not create any temporary arrays and should be almost as fast as the above variant planes[2] = Mat_(planes[2]*color_scale + 128*(1-color_scale)); // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions. planes[0] = planes[0].mul(planes[0], 1./255); #endif // now merge the results back merge(planes, img_yuv); // and produce the output RGB image cvtColor(img_yuv, img, CV_YCrCb2BGR); // this is counterpart for cvNamedWindow namedWindow("image with grain", CV_WINDOW_AUTOSIZE); #if DEMO_MIXED_API_USE // this is to demonstrate that img and iplimg really share the data - the result of the above // processing is stored in img and thus in iplimg too. cvShowImage("image with grain", iplimg); #else imshow("image with grain", img); #endif waitKey(); return 0; // all the memory will automatically be released by Vector<>, Mat and Ptr<> destructors. } #else int main(int argc, char *argv[]) { Mat im(160, 160, CV_32F); randu(im, Scalar(0.0), Scalar(1.0)); Mat dd = Mat::zeros(17,1,CV_32F); Mat lp = Mat::zeros(17,1,CV_32F); dd.at(0) = 0.5; dd.at(16) = -0.5; lp.at(0) = 0.5; lp.at(16) = 0.5; int p = 16; Mat H = dd*lp.t(); Mat imcrop(im, Rect(17, 17, im.cols-2*p, im.rows-2*p)); Mat out1, out2; filter2D(imcrop, out1, CV_32F, H, Point(-1,-1)); sepFilter2D(imcrop, out2, CV_32F, lp, dd, Point(-1,-1)); Mat temp; out1.convertTo(temp, CV_16U, 65535.0, 32768.0); imshow("filtered1.png", temp); out2.convertTo(temp, CV_16U, 65535.0, 32768.0); imshow("filtered2.png", temp); waitKey(); } #endif