/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #if !defined (HAVE_CUDA) cv::gpu::SoftCascade::SoftCascade() : filds(0) { throw_nogpu(); } cv::gpu::SoftCascade::SoftCascade( const string&, const float, const float) : filds(0) { throw_nogpu(); } cv::gpu::SoftCascade::~SoftCascade() { throw_nogpu(); } bool cv::gpu::SoftCascade::load( const string&, const float, const float) { throw_nogpu(); return false; } void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, const int, int) { throw_nogpu();} void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, int, GpuMat&, Stream) { throw_nogpu(); } #else #include namespace cv { namespace gpu { namespace device { namespace icf { void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle, const int fw, const int fh, const int bins); void detect(const PtrStepSzb& levels, const PtrStepSzb& octaves, const PtrStepSzf& stages, const PtrStepSzb& nodes, const PtrStepSzf& leaves, const PtrStepSzi& hogluv, PtrStepSz objects, PtrStepSzi counter, const int downscales); void detectAtScale(const int scale, const PtrStepSzb& levels, const PtrStepSzb& octaves, const PtrStepSzf& stages, const PtrStepSzb& nodes, const PtrStepSzf& leaves, const PtrStepSzi& hogluv, PtrStepSz objects, PtrStepSzi counter, const int downscales); } }}} struct cv::gpu::SoftCascade::Filds { Filds() { plane.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1); fplane.create(FRAME_HEIGHT * 6, FRAME_WIDTH, CV_32FC1); luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3); shrunk.create(FRAME_HEIGHT / 4 * HOG_LUV_BINS, FRAME_WIDTH / 4, CV_8UC1); integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1); hogluv.create((FRAME_HEIGHT / 4 + 1) * HOG_LUV_BINS, FRAME_WIDTH / 4 + 1, CV_32SC1); detCounter.create(1,1, CV_32SC1); } // scales range float minScale; float maxScale; int origObjWidth; int origObjHeight; int downscales; GpuMat octaves; GpuMat stages; GpuMat nodes; GpuMat leaves; GpuMat levels; GpuMat detCounter; // preallocated buffer 640x480x10 for hogluv + 640x480 got gray GpuMat plane; // preallocated buffer for floating point operations GpuMat fplane; // temporial mat for cvtColor GpuMat luv; // 160x120x10 GpuMat shrunk; // temporial mat for integrall GpuMat integralBuffer; // 161x121x10 GpuMat hogluv; std::vector scales; enum { BOOST = 0 }; enum { FRAME_WIDTH = 640, FRAME_HEIGHT = 480, TOTAL_SCALES = 55, ORIG_OBJECT_WIDTH = 64, ORIG_OBJECT_HEIGHT = 128, HOG_BINS = 6, LUV_BINS = 3, HOG_LUV_BINS = 10 }; bool fill(const FileNode &root, const float mins, const float maxs); void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const { cudaMemset(detCounter.data, 0, detCounter.step * detCounter.rows * sizeof(int)); device::icf::detect(levels, octaves, stages, nodes, leaves, hogluv, objects , detCounter, downscales); } void detectAtScale(int scale, cv::gpu::GpuMat objects, cudaStream_t stream) const { cudaMemset(detCounter.data, 0, detCounter.step * detCounter.rows * sizeof(int)); device::icf::detectAtScale(scale, levels, octaves, stages, nodes, leaves, hogluv, objects, detCounter, downscales); } private: void calcLevels(const std::vector& octs, int frameW, int frameH, int nscales); typedef std::vector::const_iterator octIt_t; int fitOctave(const std::vector& octs, const float& logFactor) const { float minAbsLog = FLT_MAX; int res = 0; for (int oct = 0; oct < (int)octs.size(); ++oct) { const device::icf::Octave& octave =octs[oct]; float logOctave = ::log(octave.scale); float logAbsScale = ::fabs(logFactor - logOctave); if(logAbsScale < minAbsLog) { res = oct; minAbsLog = logAbsScale; } } return res; } }; bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs) { using namespace device::icf; minScale = mins; maxScale = maxs; // cascade properties static const char *const SC_STAGE_TYPE = "stageType"; static const char *const SC_BOOST = "BOOST"; static const char *const SC_FEATURE_TYPE = "featureType"; static const char *const SC_ICF = "ICF"; static const char *const SC_ORIG_W = "width"; static const char *const SC_ORIG_H = "height"; static const char *const SC_OCTAVES = "octaves"; static const char *const SC_STAGES = "stages"; static const char *const SC_FEATURES = "features"; static const char *const SC_WEEK = "weakClassifiers"; static const char *const SC_INTERNAL = "internalNodes"; static const char *const SC_LEAF = "leafValues"; static const char *const SC_OCT_SCALE = "scale"; static const char *const SC_OCT_STAGES = "stageNum"; static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor"; static const char *const SC_STAGE_THRESHOLD = "stageThreshold"; static const char * const SC_F_CHANNEL = "channel"; static const char * const SC_F_RECT = "rect"; // only Ada Boost supported std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; CV_Assert(stageTypeStr == SC_BOOST); // only HOG-like integral channel features cupported string featureTypeStr = (string)root[SC_FEATURE_TYPE]; CV_Assert(featureTypeStr == SC_ICF); origObjWidth = (int)root[SC_ORIG_W]; CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH); origObjHeight = (int)root[SC_ORIG_H]; CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT); FileNode fn = root[SC_OCTAVES]; if (fn.empty()) return false; std::vector voctaves; std::vector vstages; std::vector vnodes; std::vector vleaves; scales.clear(); FileNodeIterator it = fn.begin(), it_end = fn.end(); int feature_offset = 0; ushort octIndex = 0; ushort shrinkage = 1; for (; it != it_end; ++it) { FileNode fns = *it; float scale = (float)fns[SC_OCT_SCALE]; bool isUPOctave = scale >= 1; scales.push_back(scale); ushort nstages = saturate_cast((int)fns[SC_OCT_STAGES]); ushort2 size; size.x = cvRound(ORIG_OBJECT_WIDTH * scale); size.y = cvRound(ORIG_OBJECT_HEIGHT * scale); shrinkage = saturate_cast((int)fns[SC_OCT_SHRINKAGE]); Octave octave(octIndex, nstages, shrinkage, size, scale); CV_Assert(octave.stages > 0); voctaves.push_back(octave); FileNode ffs = fns[SC_FEATURES]; if (ffs.empty()) return false; FileNodeIterator ftrs = ffs.begin(); fns = fns[SC_STAGES]; if (fn.empty()) return false; // for each stage (~ decision tree with H = 2) FileNodeIterator st = fns.begin(), st_end = fns.end(); for (; st != st_end; ++st ) { fns = *st; vstages.push_back((float)fns[SC_STAGE_THRESHOLD]); fns = fns[SC_WEEK]; FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); for (; ftr != ft_end; ++ftr) { fns = (*ftr)[SC_INTERNAL]; FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); for (; inIt != inIt_end;) { // int feature = (int)(*(inIt +=2)) + feature_offset; inIt +=3; // extract feature, Todo:check it uint th = saturate_cast((float)(*(inIt++))); cv::FileNode ftn = (*ftrs)[SC_F_RECT]; cv::FileNodeIterator r_it = ftn.begin(); uchar4 rect; rect.x = saturate_cast((int)*(r_it++)); rect.y = saturate_cast((int)*(r_it++)); rect.z = saturate_cast((int)*(r_it++)); rect.w = saturate_cast((int)*(r_it++)); if (isUPOctave) { rect.z -= rect.x; rect.w -= rect.y; } uint channel = saturate_cast((int)(*ftrs)[SC_F_CHANNEL]); vnodes.push_back(Node(rect, channel, th)); ++ftrs; } fns = (*ftr)[SC_LEAF]; inIt = fns.begin(), inIt_end = fns.end(); for (; inIt != inIt_end; ++inIt) vleaves.push_back((float)(*inIt)); } } feature_offset += octave.stages * 3; ++octIndex; } // upload in gpu memory octaves.upload(cv::Mat(1, voctaves.size() * sizeof(Octave), CV_8UC1, (uchar*)&(voctaves[0]) )); CV_Assert(!octaves.empty()); stages.upload(cv::Mat(vstages).reshape(1,1)); CV_Assert(!stages.empty()); nodes.upload(cv::Mat(1, vnodes.size() * sizeof(Node), CV_8UC1, (uchar*)&(vnodes[0]) )); CV_Assert(!nodes.empty()); leaves.upload(cv::Mat(vleaves).reshape(1,1)); CV_Assert(!leaves.empty()); // compute levels calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES); CV_Assert(!levels.empty()); return true; } namespace { struct CascadeIntrinsics { static const float lambda = 1.099f, a = 0.89f; static float getFor(int channel, float scaling) { CV_Assert(channel < 10); if (fabs(scaling - 1.f) < FLT_EPSILON) return 1.f; // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers static const float A[2][2] = { //channel <= 6, otherwise { 0.89f, 1.f}, // down { 1.00f, 1.f} // up }; static const float B[2][2] = { //channel <= 6, otherwise { 1.099f / log(2), 2.f}, // down { 0.f, 2.f} // up }; float a = A[(int)(scaling >= 1)][(int)(channel > 6)]; float b = B[(int)(scaling >= 1)][(int)(channel > 6)]; // printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b)); return a * pow(scaling, b); } }; } inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector& octs, int frameW, int frameH, int nscales) { CV_Assert(nscales > 1); using device::icf::Level; std::vector vlevels; float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1); float scale = minScale; downscales = 0; for (int sc = 0; sc < nscales; ++sc) { int width = ::std::max(0.0f, frameW - (origObjWidth * scale)); int height = ::std::max(0.0f, frameH - (origObjHeight * scale)); float logScale = ::log(scale); int fit = fitOctave(octs, logScale); Level level(fit, octs[fit], scale, width, height); level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale); level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale); if (!width || !height) break; else { vlevels.push_back(level); if (octs[fit].scale < 1) ++downscales; } if (::fabs(scale - maxScale) < FLT_EPSILON) break; scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor)); // printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale, // level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, //level.objSize.y); std::cout << "level " << sc << " octeve " << vlevels[sc].octave << " relScale " << vlevels[sc].relScale << " " << vlevels[sc].shrScale << " [" << (int)vlevels[sc].objSize.x << " " << (int)vlevels[sc].objSize.y << "] [" << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl; } levels.upload(cv::Mat(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) )); } cv::gpu::SoftCascade::SoftCascade() : filds(0) {} cv::gpu::SoftCascade::SoftCascade( const string& filename, const float minScale, const float maxScale) : filds(0) { load(filename, minScale, maxScale); } cv::gpu::SoftCascade::~SoftCascade() { delete filds; } bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, const float maxScale) { if (filds) delete filds; filds = 0; cv::FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) return false; filds = new Filds; Filds& flds = *filds; if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false; return true; } #define USE_REFERENCE_VALUES namespace { char *itoa(long i, char* s, int /*dummy_radix*/) { sprintf(s, "%ld", i); return s; } } //================================== synchronous version ============================================================// void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& /*rois*/, GpuMat& objects, const int /*rejectfactor*/, int specificScale) { // only color images are supperted CV_Assert(colored.type() == CV_8UC3); // only this window size allowed CV_Assert(colored.cols == Filds::FRAME_WIDTH && colored.rows == Filds::FRAME_HEIGHT); Filds& flds = *filds; #if defined USE_REFERENCE_VALUES cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows); cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ); char buff[33]; for(int i = 0; i < Filds::HOG_LUV_BINS; ++i) { cv::Mat channel; imgs[std::string("channel") + itoa(i, buff, 10)] >> channel; // std::cout << "channel " << i << std::endl << channel << std::endl; GpuMat gchannel(flds.hogluv, cv::Rect(0, 121 * i, 161, 121)); gchannel.upload(channel); } #else GpuMat& plane = flds.plane; GpuMat& shrunk = flds.shrunk; cudaMemset(plane.data, 0, plane.step * plane.rows); int fw = Filds::FRAME_WIDTH; int fh = Filds::FRAME_HEIGHT; GpuMat gray(plane, cv::Rect(0, fh * Filds::HOG_LUV_BINS, fw, fh)); //cv::gpu::cvtColor(colored, gray, CV_RGB2GRAY); cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY); //create hog GpuMat dfdx(flds.fplane, cv::Rect(0, 0, fw, fh)); GpuMat dfdy(flds.fplane, cv::Rect(0, fh, fw, fh)); cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, 3, 0.125f); cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, 3, 0.125f); GpuMat mag(flds.fplane, cv::Rect(0, 2 * fh, fw, fh)); GpuMat ang(flds.fplane, cv::Rect(0, 3 * fh, fw, fh)); cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true); // normolize magnitude to uchar interval and angles to 6 bins GpuMat nmag(flds.fplane, cv::Rect(0, 4 * fh, fw, fh)); GpuMat nang(flds.fplane, cv::Rect(0, 5 * fh, fw, fh)); cv::gpu::multiply(mag, cv::Scalar::all(1.f / ::log(2)), nmag); cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang); //create uchar magnitude GpuMat cmag(plane, cv::Rect(0, fh * Filds::HOG_BINS, fw, fh)); nmag.convertTo(cmag, CV_8UC1); // create luv cv::gpu::cvtColor(colored, flds.luv, CV_BGR2Luv); std::vector splited; for(int i = 0; i < Filds::LUV_BINS; ++i) { splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh))); } cv::gpu::split(flds.luv, splited); device::icf::fillBins(plane, nang, fw, fh, Filds::HOG_BINS); GpuMat hogluv(plane, cv::Rect(0, 0, fw, fh * Filds::HOG_LUV_BINS)); cv::gpu::resize(hogluv, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA); fw /= 4; fh /= 4; for(int i = 0; i < Filds::HOG_LUV_BINS; ++i) { GpuMat channel(shrunk, cv::Rect(0, fh * i, fw, fh )); GpuMat sum(flds.hogluv, cv::Rect(0, (fh + 1) * i, fw + 1, fh + 1)); cv::gpu::integralBuffered(channel, sum, flds.integralBuffer); } #endif if (specificScale == -1) flds.detect(objects, 0); else flds.detectAtScale(specificScale, objects, 0); cv::Mat out(flds.detCounter); int ndetections = *(out.data); objects = GpuMat(objects, cv::Rect(0, 0, ndetections * sizeof(Detection), 1)); } void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, int, GpuMat&, Stream) { // cudaStream_t stream = StreamAccessor::getStream(s); } #endif