/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core/core.hpp" #include "precomp.hpp" #include using namespace cv; static void downsamplePoints( const Mat& src, Mat& dst, size_t count ) { CV_Assert( count >= 2 ); CV_Assert( src.cols == 1 || src.rows == 1 ); CV_Assert( src.total() >= count ); CV_Assert( src.type() == CV_8UC3); dst.create( 1, (int)count, CV_8UC3 ); //TODO: optimize by exploiting symmetry in the distance matrix Mat dists( (int)src.total(), (int)src.total(), CV_32FC1, Scalar(0) ); if( dists.empty() ) std::cerr << "Such big matrix cann't be created." << std::endl; for( int i = 0; i < dists.rows; i++ ) { for( int j = i; j < dists.cols; j++ ) { float dist = (float)norm(src.at >(i) - src.at >(j)); dists.at(j, i) = dists.at(i, j) = dist; } } double maxVal; Point maxLoc; minMaxLoc(dists, 0, &maxVal, 0, &maxLoc); dst.at >(0) = src.at >(maxLoc.x); dst.at >(1) = src.at >(maxLoc.y); Mat activedDists( 0, dists.cols, dists.type() ); Mat candidatePointsMask( 1, dists.cols, CV_8UC1, Scalar(255) ); activedDists.push_back( dists.row(maxLoc.y) ); candidatePointsMask.at(0, maxLoc.y) = 0; for( size_t i = 2; i < count; i++ ) { activedDists.push_back(dists.row(maxLoc.x)); candidatePointsMask.at(0, maxLoc.x) = 0; Mat minDists; reduce( activedDists, minDists, 0, CV_REDUCE_MIN ); minMaxLoc( minDists, 0, &maxVal, 0, &maxLoc, candidatePointsMask ); dst.at >((int)i) = src.at >(maxLoc.x); } } void cv::generateColors( std::vector& colors, size_t count, size_t factor ) { if( count < 1 ) return; colors.resize(count); if( count == 1 ) { colors[0] = Scalar(0,0,255); // red return; } if( count == 2 ) { colors[0] = Scalar(0,0,255); // red colors[1] = Scalar(0,255,0); // green return; } // Generate a set of colors in RGB space. A size of the set is severel times (=factor) larger then // the needed count of colors. Mat bgr( 1, (int)(count*factor), CV_8UC3 ); randu( bgr, 0, 256 ); // Convert the colors set to Lab space. // Distances between colors in this space correspond a human perception. Mat lab; cvtColor( bgr, lab, CV_BGR2Lab); // Subsample colors from the generated set so that // to maximize the minimum distances between each other. // Douglas-Peucker algorithm is used for this. Mat lab_subset; downsamplePoints( lab, lab_subset, count ); // Convert subsampled colors back to RGB Mat bgr_subset; cvtColor( lab_subset, bgr_subset, CV_Lab2BGR ); CV_Assert( bgr_subset.total() == count ); for( size_t i = 0; i < count; i++ ) { Point3_ c = bgr_subset.at >((int)i); colors[i] = Scalar(c.x, c.y, c.z); } }