/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "gcgraph.hpp" #include using namespace cv; /* This is implementation of image segmentation algorithm GrabCut described in "GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts". Carsten Rother, Vladimir Kolmogorov, Andrew Blake. */ /* GMM - Gaussian Mixture Model */ class GMM { public: static const int componentsCount = 5; GMM( Mat& _model ); double operator()( const Vec3d color ) const; double operator()( int ci, const Vec3d color ) const; int whichComponent( const Vec3d color ) const; void initLearning(); void addSample( int ci, const Vec3d color ); void endLearning(); private: void calcInverseCovAndDeterm( int ci ); Mat model; double* coefs; double* mean; double* cov; double inverseCovs[componentsCount][3][3]; double covDeterms[componentsCount]; double sums[componentsCount][3]; double prods[componentsCount][3][3]; int sampleCounts[componentsCount]; int totalSampleCount; }; GMM::GMM( Mat& _model ) { const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/; if( _model.empty() ) { _model.create( 1, modelSize*componentsCount, CV_64FC1 ); _model.setTo(Scalar(0)); } else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) ) CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" ); model = _model; coefs = model.ptr(0); mean = coefs + componentsCount; cov = mean + 3*componentsCount; for( int ci = 0; ci < componentsCount; ci++ ) if( coefs[ci] > 0 ) calcInverseCovAndDeterm( ci ); } double GMM::operator()( const Vec3d color ) const { double res = 0; for( int ci = 0; ci < componentsCount; ci++ ) res += coefs[ci] * (*this)(ci, color ); return res; } double GMM::operator()( int ci, const Vec3d color ) const { double res = 0; if( coefs[ci] > 0 ) { CV_Assert( covDeterms[ci] > std::numeric_limits::epsilon() ); Vec3d diff = color; double* m = mean + 3*ci; diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2]; double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0]) + diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1]) + diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]); res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult); } return res; } int GMM::whichComponent( const Vec3d color ) const { int k = 0; double max = 0; for( int ci = 0; ci < componentsCount; ci++ ) { double p = (*this)( ci, color ); if( p > max ) { k = ci; max = p; } } return k; } void GMM::initLearning() { for( int ci = 0; ci < componentsCount; ci++) { sums[ci][0] = sums[ci][1] = sums[ci][2] = 0; prods[ci][0][0] = prods[ci][0][1] = prods[ci][0][2] = 0; prods[ci][1][0] = prods[ci][1][1] = prods[ci][1][2] = 0; prods[ci][2][0] = prods[ci][2][1] = prods[ci][2][2] = 0; sampleCounts[ci] = 0; } totalSampleCount = 0; } void GMM::addSample( int ci, const Vec3d color ) { sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2]; prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2]; prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2]; prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2]; sampleCounts[ci]++; totalSampleCount++; } void GMM::endLearning() { const double variance = 0.01; for( int ci = 0; ci < componentsCount; ci++ ) { int n = sampleCounts[ci]; if( n == 0 ) coefs[ci] = 0; else { coefs[ci] = (double)n/totalSampleCount; double* m = mean + 3*ci; m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n; double* c = cov + 9*ci; c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2]; c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2]; c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2]; double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]); if( dtrm <= std::numeric_limits::epsilon() ) { // Adds the white noise to avoid singular covariance matrix. c[0] += variance; c[4] += variance; c[8] += variance; } calcInverseCovAndDeterm(ci); } } } void GMM::calcInverseCovAndDeterm( int ci ) { if( coefs[ci] > 0 ) { double *c = cov + 9*ci; double dtrm = covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]); CV_Assert( dtrm > std::numeric_limits::epsilon() ); inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm; inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm; inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm; inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm; inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm; inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm; inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm; inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm; inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm; } } /* Calculate beta - parameter of GrabCut algorithm. beta = 1/(2*avg(sqr(||color[i] - color[j]||))) */ double calcBeta( const Mat& img ) { double beta = 0; for( int y = 0; y < img.rows; y++ ) { for( int x = 0; x < img.cols; x++ ) { Vec3d color = img.at(y,x); if( x>0 ) // left { Vec3d diff = color - (Vec3d)img.at(y,x-1); beta += diff.dot(diff); } if( y>0 && x>0 ) // upleft { Vec3d diff = color - (Vec3d)img.at(y-1,x-1); beta += diff.dot(diff); } if( y>0 ) // up { Vec3d diff = color - (Vec3d)img.at(y-1,x); beta += diff.dot(diff); } if( y>0 && x(y-1,x+1); beta += diff.dot(diff); } } } beta = 1.f / (2 * beta/(4*img.cols*img.rows - 3*img.cols - 3*img.rows + 2) ); return beta; } /* Calculate weights of noterminal vertices of graph. beta and gamma - parameters of GrabCut algorithm. */ void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, double beta, double gamma ) { const double gammaDivSqrt2 = gamma / std::sqrt(2.0f); leftW.create( img.rows, img.cols, CV_64FC1 ); upleftW.create( img.rows, img.cols, CV_64FC1 ); upW.create( img.rows, img.cols, CV_64FC1 ); uprightW.create( img.rows, img.cols, CV_64FC1 ); for( int y = 0; y < img.rows; y++ ) { for( int x = 0; x < img.cols; x++ ) { Vec3d color = img.at(y,x); if( x-1>=0 ) // left { Vec3d diff = color - (Vec3d)img.at(y,x-1); leftW.at(y,x) = gamma * exp(-beta*diff.dot(diff)); } else leftW.at(y,x) = 0; if( x-1>=0 && y-1>=0 ) // upleft { Vec3d diff = color - (Vec3d)img.at(y-1,x-1); upleftW.at(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff)); } else upleftW.at(y,x) = 0; if( y-1>=0 ) // up { Vec3d diff = color - (Vec3d)img.at(y-1,x); upW.at(y,x) = gamma * exp(-beta*diff.dot(diff)); } else upW.at(y,x) = 0; if( x+1=0 ) // upright { Vec3d diff = color - (Vec3d)img.at(y-1,x+1); uprightW.at(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff)); } else uprightW.at(y,x) = 0; } } } /* Check size, type and element values of mask matrix. */ void checkMask( const Mat& img, const Mat& mask ) { if( mask.empty() ) CV_Error( CV_StsBadArg, "mask is empty" ); if( mask.type() != CV_8UC1 ) CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" ); if( mask.cols != img.cols || mask.rows != img.rows ) CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" ); for( int y = 0; y < mask.rows; y++ ) { for( int x = 0; x < mask.cols; x++ ) { uchar val = mask.at(y,x); if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD ) CV_Error( CV_StsBadArg, "mask element value must be equel" "GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" ); } } } /* Initialize mask using rectangular. */ void initMaskWithRect( Mat& mask, Size imgSize, Rect rect ) { mask.create( imgSize, CV_8UC1 ); mask.setTo( GC_BGD ); rect.x = max(0, rect.x); rect.y = max(0, rect.y); rect.width = min(rect.width, imgSize.width-rect.x); rect.height = min(rect.height, imgSize.height-rect.y); (mask(rect)).setTo( Scalar(GC_PR_FGD) ); } /* Initialize GMM background and foreground models using kmeans algorithm. */ void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM ) { const int kMeansItCount = 10; const int kMeansType = KMEANS_PP_CENTERS; Mat bgdLabels, fgdLabels; vector bgdSamples, fgdSamples; Point p; for( p.y = 0; p.y < img.rows; p.y++ ) { for( p.x = 0; p.x < img.cols; p.x++ ) { if( mask.at(p) == GC_BGD || mask.at(p) == GC_PR_BGD ) bgdSamples.push_back( (Vec3f)img.at(p) ); else // GC_FGD | GC_PR_FGD fgdSamples.push_back( (Vec3f)img.at(p) ); } } CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() ); Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] ); kmeans( _bgdSamples, GMM::componentsCount, bgdLabels, TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType ); Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] ); kmeans( _fgdSamples, GMM::componentsCount, fgdLabels, TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType ); bgdGMM.initLearning(); for( int i = 0; i < (int)bgdSamples.size(); i++ ) bgdGMM.addSample( bgdLabels.at(i,0), bgdSamples[i] ); bgdGMM.endLearning(); fgdGMM.initLearning(); for( int i = 0; i < (int)fgdSamples.size(); i++ ) fgdGMM.addSample( fgdLabels.at(i,0), fgdSamples[i] ); fgdGMM.endLearning(); } /* Assign GMMs components for each pixel. */ void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, Mat& compIdxs ) { Point p; for( p.y = 0; p.y < img.rows; p.y++ ) { for( p.x = 0; p.x < img.cols; p.x++ ) { Vec3d color = img.at(p); compIdxs.at(p) = mask.at(p) == GC_BGD || mask.at(p) == GC_PR_BGD ? bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color); } } } /* Learn GMMs parameters. */ void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGMM, GMM& fgdGMM ) { bgdGMM.initLearning(); fgdGMM.initLearning(); Point p; for( int ci = 0; ci < GMM::componentsCount; ci++ ) { for( p.y = 0; p.y < img.rows; p.y++ ) { for( p.x = 0; p.x < img.cols; p.x++ ) { if( compIdxs.at(p) == ci ) { if( mask.at(p) == GC_BGD || mask.at(p) == GC_PR_BGD ) bgdGMM.addSample( ci, img.at(p) ); else fgdGMM.addSample( ci, img.at(p) ); } } } } bgdGMM.endLearning(); fgdGMM.endLearning(); } /* Construct GCGraph */ void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda, const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW, GCGraph& graph ) { int vtxCount = img.cols*img.rows, edgeCount = 2*(4*img.cols*img.rows - 3*(img.cols + img.rows) + 2); graph.create(vtxCount, edgeCount); Point p; for( p.y = 0; p.y < img.rows; p.y++ ) { for( p.x = 0; p.x < img.cols; p.x++) { // add node int vtxIdx = graph.addVtx(); Vec3b color = img.at(p); // set t-weights double fromSource, toSink; if( mask.at(p) == GC_PR_BGD || mask.at(p) == GC_PR_FGD ) { fromSource = -log( bgdGMM(color) ); toSink = -log( fgdGMM(color) ); } else if( mask.at(p) == GC_BGD ) { fromSource = 0; toSink = lambda; } else // GC_FGD { fromSource = lambda; toSink = 0; } graph.addTermWeights( vtxIdx, fromSource, toSink ); // set n-weights if( p.x>0 ) { double w = leftW.at(p); graph.addEdges( vtxIdx, vtxIdx-1, w, w ); } if( p.x>0 && p.y>0 ) { double w = upleftW.at(p); graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w ); } if( p.y>0 ) { double w = upW.at(p); graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w ); } if( p.x0 ) { double w = uprightW.at(p); graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w ); } } } } /* Estimate segmentation using MaxFlow algorithm */ void estimateSegmentation( GCGraph& graph, Mat& mask ) { graph.maxFlow(); Point p; for( p.y = 0; p.y < mask.rows; p.y++ ) { for( p.x = 0; p.x < mask.cols; p.x++ ) { if( mask.at(p) == GC_PR_BGD || mask.at(p) == GC_PR_FGD ) { if( graph.inSourceSegment( p.y*mask.cols+p.x /*vertex index*/ ) ) mask.at(p) = GC_PR_FGD; else mask.at(p) = GC_PR_BGD; } } } } void cv::grabCut( const InputArray& _img, InputOutputArray _mask, Rect rect, InputOutputArray _bgdModel, InputOutputArray _fgdModel, int iterCount, int mode ) { Mat img = _img.getMat(); Mat& mask = _mask.getMatRef(); Mat& bgdModel = _bgdModel.getMatRef(); Mat& fgdModel = _fgdModel.getMatRef(); if( img.empty() ) CV_Error( CV_StsBadArg, "image is empty" ); if( img.type() != CV_8UC3 ) CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" ); GMM bgdGMM( bgdModel ), fgdGMM( fgdModel ); Mat compIdxs( img.size(), CV_32SC1 ); if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK ) { if( mode == GC_INIT_WITH_RECT ) initMaskWithRect( mask, img.size(), rect ); else // flag == GC_INIT_WITH_MASK checkMask( img, mask ); initGMMs( img, mask, bgdGMM, fgdGMM ); } if( iterCount <= 0) return; if( mode == GC_EVAL ) checkMask( img, mask ); const double gamma = 50; const double lambda = 9*gamma; const double beta = calcBeta( img ); Mat leftW, upleftW, upW, uprightW; calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma ); for( int i = 0; i < iterCount; i++ ) { GCGraph graph; assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs ); learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM ); constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph ); estimateSegmentation( graph, mask ); } }