#include #if !PYTHON_USE_NUMPY #error "The module can only be built if NumPy is available" #endif #define MODULESTR "cv2" #include "numpy/ndarrayobject.h" #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/ml/ml.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/video/tracking.hpp" #include "opencv2/video/background_segm.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv_extra_api.hpp" static PyObject* opencv_error = 0; static int failmsg(const char *fmt, ...) { char str[1000]; va_list ap; va_start(ap, fmt); vsnprintf(str, sizeof(str), fmt, ap); va_end(ap); PyErr_SetString(PyExc_TypeError, str); return 0; } #define ERRWRAP2(expr) \ try \ { \ expr; \ } \ catch (const cv::Exception &e) \ { \ PyErr_SetString(opencv_error, e.what()); \ return 0; \ } using namespace cv; typedef vector vector_uchar; typedef vector vector_int; typedef vector vector_float; typedef vector vector_double; typedef vector vector_Point; typedef vector vector_Point2f; typedef vector vector_Vec2f; typedef vector vector_Vec3f; typedef vector vector_Vec4i; typedef vector vector_Rect; typedef vector vector_KeyPoint; typedef vector vector_Mat; typedef vector > vector_vector_Point; typedef vector > vector_vector_Point2f; typedef vector > vector_vector_Point3f; static PyObject* failmsgp(const char *fmt, ...) { char str[1000]; va_list ap; va_start(ap, fmt); vsnprintf(str, sizeof(str), fmt, ap); va_end(ap); PyErr_SetString(PyExc_TypeError, str); return 0; } static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) + (0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int); static inline PyObject* pyObjectFromRefcount(const int* refcount) { return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET); } static inline int* refcountFromPyObject(const PyObject* obj) { return (int*)((size_t)obj + REFCOUNT_OFFSET); } class NumpyAllocator : public MatAllocator { public: NumpyAllocator() {} ~NumpyAllocator() {} void allocate(int dims, const int* sizes, int type, int*& refcount, uchar*& datastart, uchar*& data, size_t* step) { int depth = CV_MAT_DEPTH(type); int cn = CV_MAT_CN(type); const int f = (int)(sizeof(size_t)/8); int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE : depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT : depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT : depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT; int i; npy_intp _sizes[CV_MAX_DIM+1]; for( i = 0; i < dims; i++ ) _sizes[i] = sizes[i]; if( cn > 1 ) { /*if( _sizes[dims-1] == 1 ) _sizes[dims-1] = cn; else*/ _sizes[dims++] = cn; } PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum); if(!o) CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims)); refcount = refcountFromPyObject(o); npy_intp* _strides = PyArray_STRIDES(o); for( i = 0; i < dims - (cn > 1); i++ ) step[i] = (size_t)_strides[i]; datastart = data = (uchar*)PyArray_DATA(o); } void deallocate(int* refcount, uchar* datastart, uchar* data) { if( !refcount ) return; PyObject* o = pyObjectFromRefcount(refcount); Py_INCREF(o); Py_DECREF(o); } }; NumpyAllocator g_numpyAllocator; enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 }; static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "", bool allowND=true) { if(!o || o == Py_None) { if( !m.data ) m.allocator = &g_numpyAllocator; return true; } if( !PyArray_Check(o) ) { failmsg("%s is not a numpy array", name); return false; } int typenum = PyArray_TYPE(o); int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S : typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S : typenum == NPY_INT || typenum == NPY_LONG ? CV_32S : typenum == NPY_FLOAT ? CV_32F : typenum == NPY_DOUBLE ? CV_64F : -1; if( type < 0 ) { failmsg("%s data type = %d is not supported", name, typenum); return false; } int ndims = PyArray_NDIM(o); if(ndims >= CV_MAX_DIM) { failmsg("%s dimensionality (=%d) is too high", name, ndims); return false; } int size[CV_MAX_DIM+1]; size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type); const npy_intp* _sizes = PyArray_DIMS(o); const npy_intp* _strides = PyArray_STRIDES(o); bool transposed = false; for(int i = 0; i < ndims; i++) { size[i] = (int)_sizes[i]; step[i] = (size_t)_strides[i]; } if( ndims == 0 || step[ndims-1] > elemsize ) { size[ndims] = 1; step[ndims] = elemsize; ndims++; } if( ndims >= 2 && step[0] < step[1] ) { std::swap(size[0], size[1]); std::swap(step[0], step[1]); transposed = true; } if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] ) { ndims--; type |= CV_MAKETYPE(0, size[2]); } if( ndims > 2 && !allowND ) { failmsg("%s has more than 2 dimensions", name); return false; } m = Mat(ndims, size, type, PyArray_DATA(o), step); if( m.data ) { m.refcount = refcountFromPyObject(o); m.addref(); // protect the original numpy array from deallocation // (since Mat destructor will decrement the reference counter) }; m.allocator = &g_numpyAllocator; if( transposed ) { Mat tmp; tmp.allocator = &g_numpyAllocator; transpose(m, tmp); m = tmp; } return true; } static PyObject* pyopencv_from(const Mat& m) { Mat temp, *p = (Mat*)&m; if(!p->refcount || p->allocator != &g_numpyAllocator) { temp.allocator = &g_numpyAllocator; m.copyTo(temp); p = &temp; } p->addref(); return pyObjectFromRefcount(p->refcount); } static bool pyopencv_to(PyObject *o, Scalar& s, const char *name = "") { if(!o || o == Py_None) return true; if (PySequence_Check(o)) { PyObject *fi = PySequence_Fast(o, name); if (fi == NULL) return false; if (4 < PySequence_Fast_GET_SIZE(fi)) { failmsg("Scalar value for argument '%s' is longer than 4", name); return false; } for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(fi); i++) { PyObject *item = PySequence_Fast_GET_ITEM(fi, i); if (PyFloat_Check(item) || PyInt_Check(item)) { s[i] = PyFloat_AsDouble(item); } else { failmsg("Scalar value for argument '%s' is not numeric", name); return false; } } Py_DECREF(fi); } else { if (PyFloat_Check(o) || PyInt_Check(o)) { s[0] = PyFloat_AsDouble(o); } else { failmsg("Scalar value for argument '%s' is not numeric", name); return false; } } return true; } static inline PyObject* pyopencv_from(const Scalar& src) { return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]); } static PyObject* pyopencv_from(bool value) { return PyBool_FromLong(value); } static bool pyopencv_to(PyObject* obj, bool& value, const char* name = "") { if(!obj || obj == Py_None) return true; int _val = PyObject_IsTrue(obj); if(_val < 0) return false; value = _val > 0; return true; } static PyObject* pyopencv_from(size_t value) { return PyLong_FromUnsignedLong((unsigned long)value); } static PyObject* pyopencv_from(int value) { return PyInt_FromLong(value); } static bool pyopencv_to(PyObject* obj, int& value, const char* name = "") { if(!obj || obj == Py_None) return true; value = (int)PyInt_AsLong(obj); return value != -1 || !PyErr_Occurred(); } static PyObject* pyopencv_from(double value) { return PyFloat_FromDouble(value); } static bool pyopencv_to(PyObject* obj, double& value, const char* name = "") { if(!obj || obj == Py_None) return true; if(PyInt_CheckExact(obj)) value = (double)PyInt_AS_LONG(obj); else value = PyFloat_AsDouble(obj); return !PyErr_Occurred(); } static PyObject* pyopencv_from(float value) { return PyFloat_FromDouble(value); } static bool pyopencv_to(PyObject* obj, float& value, const char* name = "") { if(!obj || obj == Py_None) return true; if(PyInt_CheckExact(obj)) value = (float)PyInt_AS_LONG(obj); else value = (float)PyFloat_AsDouble(obj); return !PyErr_Occurred(); } static PyObject* pyopencv_from(const string& value) { return PyString_FromString(value.empty() ? "" : value.c_str()); } static bool pyopencv_to(PyObject* obj, string& value, const char* name = "") { if(!obj || obj == Py_None) return true; char* str = PyString_AsString(obj); if(!str) return false; value = string(str); return true; } static inline bool pyopencv_to(PyObject* obj, Size& sz, const char* name = "") { if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "ii", &sz.width, &sz.height) > 0; } static inline PyObject* pyopencv_from(const Size& sz) { return Py_BuildValue("(ii)", sz.width, sz.height); } static inline bool pyopencv_to(PyObject* obj, Rect& r, const char* name = "") { if(!obj || obj == Py_None) return true; return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0; } static inline PyObject* pyopencv_from(const Rect& r) { return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height); } static inline bool pyopencv_to(PyObject* obj, Range& r, const char* name = "") { if(!obj || obj == Py_None) return true; if(PyObject_Size(obj) == 0) { r = Range::all(); return true; } return PyArg_ParseTuple(obj, "ii", &r.start, &r.end) > 0; } static inline PyObject* pyopencv_from(const Range& r) { return Py_BuildValue("(ii)", r.start, r.end); } static inline bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name = "") { if(!obj || obj == Py_None) return true; if(PyObject_Size(obj) == 0) { r = CV_WHOLE_SEQ; return true; } return PyArg_ParseTuple(obj, "ii", &r.start_index, &r.end_index) > 0; } static inline PyObject* pyopencv_from(const CvSlice& r) { return Py_BuildValue("(ii)", r.start_index, r.end_index); } static inline bool pyopencv_to(PyObject* obj, Point& p, const char* name = "") { if(!obj || obj == Py_None) return true; if(PyComplex_CheckExact(obj)) { Py_complex c = PyComplex_AsCComplex(obj); p.x = saturate_cast(c.real); p.y = saturate_cast(c.imag); return true; } return PyArg_ParseTuple(obj, "ii", &p.x, &p.y) > 0; } static inline bool pyopencv_to(PyObject* obj, Point2f& p, const char* name = "") { if(!obj || obj == Py_None) return true; if(PyComplex_CheckExact(obj)) { Py_complex c = PyComplex_AsCComplex(obj); p.x = saturate_cast(c.real); p.y = saturate_cast(c.imag); return true; } return PyArg_ParseTuple(obj, "ff", &p.x, &p.y) > 0; } static inline PyObject* pyopencv_from(const Point& p) { return Py_BuildValue("(ii)", p.x, p.y); } static inline PyObject* pyopencv_from(const Point2f& p) { return Py_BuildValue("(dd)", p.x, p.y); } static inline bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name = "") { if(!obj) return true; return PyArg_ParseTuple(obj, "ddd", &v[0], &v[1], &v[2]) > 0; } static inline PyObject* pyopencv_from(const Vec3d& v) { return Py_BuildValue("(ddd)", v[0], v[1], v[2]); } static inline PyObject* pyopencv_from(const Point2d& p) { return Py_BuildValue("(dd)", p.x, p.y); } template struct pyopencvVecConverter { static bool to(PyObject* obj, vector<_Tp>& value, const char* name="") { typedef typename DataType<_Tp>::channel_type _Cp; if(!obj || obj == Py_None) return true; if (PyArray_Check(obj)) { Mat m; pyopencv_to(obj, m, name); m.copyTo(value); } if (!PySequence_Check(obj)) return false; PyObject *seq = PySequence_Fast(obj, name); if (seq == NULL) return false; int i, j, n = (int)PySequence_Fast_GET_SIZE(seq); value.resize(n); int type = DataType<_Tp>::type; int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type); PyObject** items = PySequence_Fast_ITEMS(seq); for( i = 0; i < n; i++ ) { PyObject* item = items[i]; PyObject* seq_i = 0; PyObject** items_i = &item; _Cp* data = (_Cp*)&value[i]; if( channels == 2 && PyComplex_CheckExact(item) ) { Py_complex c = PyComplex_AsCComplex(obj); data[0] = saturate_cast<_Cp>(c.real); data[1] = saturate_cast<_Cp>(c.imag); continue; } if( channels > 1 ) { if( PyArray_Check(obj)) { Mat src; pyopencv_to(obj, src, name); if( src.dims != 2 || src.channels() != 1 || ((src.cols != 1 || src.rows != channels) && (src.cols != channels || src.rows != 1))) break; Mat dst(src.rows, src.cols, depth, data); src.convertTo(dst, type); if( dst.data != (uchar*)data ) break; continue; } seq_i = PySequence_Fast(item, name); if( !seq_i || (int)PySequence_Fast_GET_SIZE(seq_i) != channels ) { Py_XDECREF(seq_i); break; } items_i = PySequence_Fast_ITEMS(seq_i); } for( j = 0; j < channels; j++ ) { PyObject* item_ij = items_i[j]; if( PyInt_Check(item_ij)) { int v = PyInt_AsLong(item_ij); if( v == -1 && PyErr_Occurred() ) break; data[j] = saturate_cast<_Cp>(v); } else if( PyFloat_Check(item_ij)) { double v = PyFloat_AsDouble(item_ij); if( PyErr_Occurred() ) break; data[j] = saturate_cast<_Cp>(v); } else break; } Py_XDECREF(seq_i); if( j < channels ) break; } Py_DECREF(seq); return i == n; } static PyObject* from(const vector<_Tp>& value) { if(value.empty()) return PyTuple_New(0); Mat src((int)value.size(), DataType<_Tp>::channels, DataType<_Tp>::depth, (uchar*)&value[0]); return pyopencv_from(src); } }; template static inline bool pyopencv_to(PyObject* obj, vector<_Tp>& value, const char* name="") { return pyopencvVecConverter<_Tp>::to(obj, value, name); } template static inline PyObject* pyopencv_from(const vector<_Tp>& value) { return pyopencvVecConverter<_Tp>::from(value); } static PyObject* pyopencv_from(const KeyPoint&); template static inline bool pyopencv_to_generic_vec(PyObject* obj, vector<_Tp>& value, const char* name="") { if(!obj || obj == Py_None) return true; if (!PySequence_Check(obj)) return false; PyObject *seq = PySequence_Fast(obj, name); if (seq == NULL) return false; int i, n = (int)PySequence_Fast_GET_SIZE(seq); value.resize(n); PyObject** items = PySequence_Fast_ITEMS(seq); for( i = 0; i < n; i++ ) { PyObject* item = items[i]; if(!pyopencv_to(item, value[i], name)) break; } Py_DECREF(seq); return i == n; } template static inline PyObject* pyopencv_from_generic_vec(const vector<_Tp>& value) { int i, n = (int)value.size(); PyObject* seq = PyList_New(n); for( i = 0; i < n; i++ ) { PyObject* item = pyopencv_from(value[i]); if(!item) break; PyList_SET_ITEM(seq, i, item); } if( i < n ) { Py_DECREF(seq); return 0; } return seq; } template struct pyopencvVecConverter > { static bool to(PyObject* obj, vector >& value, const char* name="") { return pyopencv_to_generic_vec(obj, value, name); } static PyObject* from(const vector >& value) { return pyopencv_from_generic_vec(value); } }; template<> struct pyopencvVecConverter { static bool to(PyObject* obj, vector& value, const char* name="") { return pyopencv_to_generic_vec(obj, value, name); } static PyObject* from(const vector& value) { return pyopencv_from_generic_vec(value); } }; template<> struct pyopencvVecConverter { static bool to(PyObject* obj, vector& value, const char* name="") { return pyopencv_to_generic_vec(obj, value, name); } static PyObject* from(const vector& value) { return pyopencv_from_generic_vec(value); } }; static inline bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name="") { if(!obj) return true; return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0; } static inline PyObject* pyopencv_from(const CvTermCriteria& src) { return Py_BuildValue("(iid)", src.type, src.max_iter, src.epsilon); } static inline bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name="") { if(!obj) return true; return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0; } static inline PyObject* pyopencv_from(const TermCriteria& src) { return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon); } static inline bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name="") { if(!obj) return true; return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0; } static inline PyObject* pyopencv_from(const RotatedRect& src) { return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle); } static inline PyObject* pyopencv_from(const Moments& m) { return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}", "m00", m.m00, "m10", m.m10, "m01", m.m01, "m20", m.m20, "m11", m.m11, "m02", m.m02, "m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03, "mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02, "mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03, "nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02, "nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "mu03", m.nu03); } static inline PyObject* pyopencv_from(const CvDTreeNode* node) { double value = node->value; int ivalue = cvRound(value); return value == ivalue ? PyInt_FromLong(ivalue) : PyFloat_FromDouble(value); } #define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return #include "pyopencv_generated_types.h" #include "pyopencv_generated_funcs.h" static PyMethodDef methods[] = { #include "pyopencv_generated_func_tab.h" {NULL, NULL}, }; /************************************************************************/ /* Module init */ static int to_ok(PyTypeObject *to) { to->tp_alloc = PyType_GenericAlloc; to->tp_new = PyType_GenericNew; to->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; return (PyType_Ready(to) == 0); } extern "C" #if defined WIN32 || defined _WIN32 __declspec(dllexport) #endif void initcv2() { #if PYTHON_USE_NUMPY import_array(); #endif #if PYTHON_USE_NUMPY #include "pyopencv_generated_type_reg.h" #endif PyObject* m = Py_InitModule(MODULESTR"", methods); PyObject* d = PyModule_GetDict(m); PyDict_SetItemString(d, "__version__", PyString_FromString("$Rev: 4557 $")); opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, NULL); PyDict_SetItemString(d, "error", opencv_error); // AFAIK the only floating-point constant PyDict_SetItemString(d, "CV_PI", PyFloat_FromDouble(CV_PI)); #define PUBLISH(I) PyDict_SetItemString(d, #I, PyInt_FromLong(I)) #define PUBLISHU(I) PyDict_SetItemString(d, #I, PyLong_FromUnsignedLong(I)) #define PUBLISH2(I, value) PyDict_SetItemString(d, #I, PyLong_FromLong(value)) PUBLISHU(IPL_DEPTH_8U); PUBLISHU(IPL_DEPTH_8S); PUBLISHU(IPL_DEPTH_16U); PUBLISHU(IPL_DEPTH_16S); PUBLISHU(IPL_DEPTH_32S); PUBLISHU(IPL_DEPTH_32F); PUBLISHU(IPL_DEPTH_64F); PUBLISH(CV_LOAD_IMAGE_COLOR); PUBLISH(CV_LOAD_IMAGE_GRAYSCALE); PUBLISH(CV_LOAD_IMAGE_UNCHANGED); PUBLISH(CV_HIST_ARRAY); PUBLISH(CV_HIST_SPARSE); PUBLISH(CV_8U); PUBLISH(CV_8UC1); PUBLISH(CV_8UC2); PUBLISH(CV_8UC3); PUBLISH(CV_8UC4); PUBLISH(CV_8S); PUBLISH(CV_8SC1); PUBLISH(CV_8SC2); PUBLISH(CV_8SC3); PUBLISH(CV_8SC4); PUBLISH(CV_16U); PUBLISH(CV_16UC1); PUBLISH(CV_16UC2); PUBLISH(CV_16UC3); PUBLISH(CV_16UC4); PUBLISH(CV_16S); PUBLISH(CV_16SC1); PUBLISH(CV_16SC2); PUBLISH(CV_16SC3); PUBLISH(CV_16SC4); PUBLISH(CV_32S); PUBLISH(CV_32SC1); PUBLISH(CV_32SC2); PUBLISH(CV_32SC3); PUBLISH(CV_32SC4); PUBLISH(CV_32F); PUBLISH(CV_32FC1); PUBLISH(CV_32FC2); PUBLISH(CV_32FC3); PUBLISH(CV_32FC4); PUBLISH(CV_64F); PUBLISH(CV_64FC1); PUBLISH(CV_64FC2); PUBLISH(CV_64FC3); PUBLISH(CV_64FC4); PUBLISH(CV_NEXT_AROUND_ORG); PUBLISH(CV_NEXT_AROUND_DST); PUBLISH(CV_PREV_AROUND_ORG); PUBLISH(CV_PREV_AROUND_DST); PUBLISH(CV_NEXT_AROUND_LEFT); PUBLISH(CV_NEXT_AROUND_RIGHT); PUBLISH(CV_PREV_AROUND_LEFT); PUBLISH(CV_PREV_AROUND_RIGHT); PUBLISH(CV_WINDOW_AUTOSIZE); PUBLISH(CV_PTLOC_INSIDE); PUBLISH(CV_PTLOC_ON_EDGE); PUBLISH(CV_PTLOC_VERTEX); PUBLISH(CV_PTLOC_OUTSIDE_RECT); PUBLISH(GC_BGD); PUBLISH(GC_FGD); PUBLISH(GC_PR_BGD); PUBLISH(GC_PR_FGD); PUBLISH(GC_INIT_WITH_RECT); PUBLISH(GC_INIT_WITH_MASK); PUBLISH(GC_EVAL); PUBLISH(CV_ROW_SAMPLE); PUBLISH(CV_VAR_NUMERICAL); PUBLISH(CV_VAR_ORDERED); PUBLISH(CV_VAR_CATEGORICAL); PUBLISH(CV_AA); #include "pyopencv_generated_const_reg.h" }