/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include #include // ========= FeaturePool ========= // sft::ICFFeaturePool::ICFFeaturePool(cv::Size m, int n) : FeaturePool(), model(m), nfeatures(n) { CV_Assert(m != cv::Size() && n > 0); fill(nfeatures); } void sft::ICFFeaturePool::preprocess(cv::InputArray frame, cv::OutputArray integrals) const { preprocessor.apply(frame, integrals); } float sft::ICFFeaturePool::apply(int fi, int si, const Mat& integrals) const { return pool[fi](integrals.row(si), model); } void sft::ICFFeaturePool::write( cv::FileStorage& fs, int index) const { CV_Assert((index > 0) && (index < (int)pool.size())); fs << pool[index]; } void sft::write(cv::FileStorage& fs, const string&, const ICF& f) { fs << "{" << "channel" << f.channel << "rect" << f.bb << "}"; } sft::ICFFeaturePool::~ICFFeaturePool(){} #define USE_LONG_SEEDS #if defined USE_LONG_SEEDS # define FEATURE_RECT_SEED 8854342234LU #else # define FEATURE_RECT_SEED 88543422LU #endif # define DCHANNELS_SEED 314152314LU #undef USE_LONG_SEEDS void sft::ICFFeaturePool::fill(int desired) { int mw = model.width; int mh = model.height; int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS; nfeatures = std::min(desired, maxPoolSize); dprintf("Requeste feature pool %d max %d suggested %d\n", desired, maxPoolSize, nfeatures); pool.reserve(nfeatures); sft::Random::engine eng(FEATURE_RECT_SEED); sft::Random::engine eng_ch(DCHANNELS_SEED); sft::Random::uniform chRand(0, N_CHANNELS - 1); sft::Random::uniform xRand(0, model.width - 2); sft::Random::uniform yRand(0, model.height - 2); sft::Random::uniform wRand(1, model.width - 1); sft::Random::uniform hRand(1, model.height - 1); while (pool.size() < size_t(nfeatures)) { int x = xRand(eng); int y = yRand(eng); int w = 1 + wRand(eng, model.width - x - 1); int h = 1 + hRand(eng, model.height - y - 1); CV_Assert(w > 0); CV_Assert(h > 0); CV_Assert(w + x < model.width); CV_Assert(h + y < model.height); int ch = chRand(eng_ch); sft::ICF f(x, y, w, h, ch); if (std::find(pool.begin(), pool.end(),f) == pool.end()) { pool.push_back(f); std::cout << f << std::endl; } } } std::ostream& sft::operator<<(std::ostream& out, const sft::ICF& m) { out << m.channel << " " << m.bb; return out; } // ============ Dataset ============ // namespace { using namespace sft; string itoa(long i) { char s[65]; sprintf(s, "%ld", i); return std::string(s); } } #if !defined (_WIN32) && ! defined(__MINGW32__) #include namespace { using namespace sft; void glob(const string& path, svector& ret) { glob_t glob_result; glob(path.c_str(), GLOB_TILDE, 0, &glob_result); ret.clear(); ret.reserve(glob_result.gl_pathc); for(unsigned int i = 0; i < glob_result.gl_pathc; ++i) { ret.push_back(std::string(glob_result.gl_pathv[i])); dprintf("%s\n", ret[i].c_str()); } globfree(&glob_result); } } #else #include namespace { using namespace sft; void glob(const string& refRoot, const string& refExt, svector &refvecFiles) { std::string strFilePath; // Filepath std::string strExtension; // Extension std::string strPattern = refRoot + "\\*.*"; WIN32_FIND_DATA FileInformation; // File information HANDLE hFile = ::FindFirstFile(strPattern.c_str(), &FileInformation); if(hFile == INVALID_HANDLE_VALUE) CV_Error(CV_StsBadArg, "Your dataset search path is incorrect"); do { if(FileInformation.cFileName[0] != '.') { strFilePath.erase(); strFilePath = refRoot + "\\" + FileInformation.cFileName; if( !(FileInformation.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) ) { // Check extension strExtension = FileInformation.cFileName; strExtension = strExtension.substr(strExtension.rfind(".") + 1); if(strExtension == refExt) // Save filename refvecFiles.push_back(strFilePath); } } } while(::FindNextFile(hFile, &FileInformation) == TRUE); // Close handle ::FindClose(hFile); DWORD dwError = ::GetLastError(); if(dwError != ERROR_NO_MORE_FILES) CV_Error(CV_StsBadArg, "Your dataset search path is incorrect"); } } #endif // in the default case data folders should be alligned as following: // 1. positives: /octave_/pos/*.png // 2. negatives: /octave_/neg/*.png ScaledDataset::ScaledDataset(const string& path, const int oct) { dprintf("%s\n", "get dataset file names..."); dprintf("%s\n", "Positives globbing..."); #if !defined (_WIN32) && ! defined(__MINGW32__) glob(path + "/pos/octave_" + itoa(oct) + "/*.png", pos); #else glob(path + "/pos/octave_" + itoa(oct), "png", pos); #endif dprintf("%s\n", "Negatives globbing..."); #if !defined (_WIN32) && ! defined(__MINGW32__) glob(path + "/neg/octave_" + itoa(oct) + "/*.png", neg); #else glob(path + "/neg/octave_" + itoa(oct), "png", neg); #endif // Check: files not empty CV_Assert(pos.size() != size_t(0)); CV_Assert(neg.size() != size_t(0)); } cv::Mat ScaledDataset::get(SampleType type, int idx) const { const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx]; return cv::imread(src); } int ScaledDataset::available(SampleType type) const { return (int)((type == POSITIVE)? pos.size():neg.size()); } ScaledDataset::~ScaledDataset(){}