/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" CV_IMPL CvRect cvMaxRect( const CvRect* rect1, const CvRect* rect2 ) { if( rect1 && rect2 ) { CvRect max_rect; int a, b; max_rect.x = a = rect1->x; b = rect2->x; if( max_rect.x > b ) max_rect.x = b; max_rect.width = a += rect1->width; b += rect2->width; if( max_rect.width < b ) max_rect.width = b; max_rect.width -= max_rect.x; max_rect.y = a = rect1->y; b = rect2->y; if( max_rect.y > b ) max_rect.y = b; max_rect.height = a += rect1->height; b += rect2->height; if( max_rect.height < b ) max_rect.height = b; max_rect.height -= max_rect.y; return max_rect; } else if( rect1 ) return *rect1; else if( rect2 ) return *rect2; else return cvRect(0,0,0,0); } CV_IMPL void cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ) { if( !pt ) CV_Error( CV_StsNullPtr, "NULL vertex array pointer" ); cv::RotatedRect(box).points((cv::Point2f*)pt); } int icvIntersectLines( double x1, double dx1, double y1, double dy1, double x2, double dx2, double y2, double dy2, double *t2 ) { double d = dx1 * dy2 - dx2 * dy1; int result = -1; if( d != 0 ) { *t2 = ((x2 - x1) * dy1 - (y2 - y1) * dx1) / d; result = 0; } return result; } void icvCreateCenterNormalLine( CvSubdiv2DEdge edge, double *_a, double *_b, double *_c ) { CvPoint2D32f org = cvSubdiv2DEdgeOrg( edge )->pt; CvPoint2D32f dst = cvSubdiv2DEdgeDst( edge )->pt; double a = dst.x - org.x; double b = dst.y - org.y; double c = -(a * (dst.x + org.x) + b * (dst.y + org.y)); *_a = a + a; *_b = b + b; *_c = c; } void icvIntersectLines3( double *a0, double *b0, double *c0, double *a1, double *b1, double *c1, CvPoint2D32f * point ) { double det = a0[0] * b1[0] - a1[0] * b0[0]; if( det != 0 ) { det = 1. / det; point->x = (float) ((b0[0] * c1[0] - b1[0] * c0[0]) * det); point->y = (float) ((a1[0] * c0[0] - a0[0] * c1[0]) * det); } else { point->x = point->y = FLT_MAX; } } CV_IMPL double cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist ) { double result = 0; CvSeqBlock block; CvContour header; CvSeq* contour = (CvSeq*)_contour; CvSeqReader reader; int i, total, counter = 0; int is_float; double min_dist_num = FLT_MAX, min_dist_denom = 1; CvPoint ip = {0,0}; if( !CV_IS_SEQ(contour) ) { contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE + CV_SEQ_FLAG_CLOSED, _contour, &header, &block ); } else if( CV_IS_SEQ_POINT_SET(contour) ) { if( contour->header_size == sizeof(CvContour) && !measure_dist ) { CvRect r = ((CvContour*)contour)->rect; if( pt.x < r.x || pt.y < r.y || pt.x >= r.x + r.width || pt.y >= r.y + r.height ) return -1; } } else if( CV_IS_SEQ_CHAIN(contour) ) { CV_Error( CV_StsBadArg, "Chains are not supported. Convert them to polygonal representation using cvApproxChains()" ); } else CV_Error( CV_StsBadArg, "Input contour is neither a valid sequence nor a matrix" ); total = contour->total; is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2; cvStartReadSeq( contour, &reader, -1 ); if( !is_float && !measure_dist && (ip.x = cvRound(pt.x)) == pt.x && (ip.y = cvRound(pt.y)) == pt.y ) { // the fastest "pure integer" branch CvPoint v0, v; CV_READ_SEQ_ELEM( v, reader ); for( i = 0; i < total; i++ ) { int dist; v0 = v; CV_READ_SEQ_ELEM( v, reader ); if( (v0.y <= ip.y && v.y <= ip.y) || (v0.y > ip.y && v.y > ip.y) || (v0.x < ip.x && v.x < ip.x) ) { if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y && ((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) ) return 0; continue; } dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y); if( dist == 0 ) return 0; if( v.y < v0.y ) dist = -dist; counter += dist > 0; } result = counter % 2 == 0 ? -1 : 1; } else { CvPoint2D32f v0, v; CvPoint iv; if( is_float ) { CV_READ_SEQ_ELEM( v, reader ); } else { CV_READ_SEQ_ELEM( iv, reader ); v = cvPointTo32f( iv ); } if( !measure_dist ) { for( i = 0; i < total; i++ ) { double dist; v0 = v; if( is_float ) { CV_READ_SEQ_ELEM( v, reader ); } else { CV_READ_SEQ_ELEM( iv, reader ); v = cvPointTo32f( iv ); } if( (v0.y <= pt.y && v.y <= pt.y) || (v0.y > pt.y && v.y > pt.y) || (v0.x < pt.x && v.x < pt.x) ) { if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y && ((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) ) return 0; continue; } dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y); if( dist == 0 ) return 0; if( v.y < v0.y ) dist = -dist; counter += dist > 0; } result = counter % 2 == 0 ? -1 : 1; } else { for( i = 0; i < total; i++ ) { double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1; v0 = v; if( is_float ) { CV_READ_SEQ_ELEM( v, reader ); } else { CV_READ_SEQ_ELEM( iv, reader ); v = cvPointTo32f( iv ); } dx = v.x - v0.x; dy = v.y - v0.y; dx1 = pt.x - v0.x; dy1 = pt.y - v0.y; dx2 = pt.x - v.x; dy2 = pt.y - v.y; if( dx1*dx + dy1*dy <= 0 ) dist_num = dx1*dx1 + dy1*dy1; else if( dx2*dx + dy2*dy >= 0 ) dist_num = dx2*dx2 + dy2*dy2; else { dist_num = (dy1*dx - dx1*dy); dist_num *= dist_num; dist_denom = dx*dx + dy*dy; } if( dist_num*min_dist_denom < min_dist_num*dist_denom ) { min_dist_num = dist_num; min_dist_denom = dist_denom; if( min_dist_num == 0 ) break; } if( (v0.y <= pt.y && v.y <= pt.y) || (v0.y > pt.y && v.y > pt.y) || (v0.x < pt.x && v.x < pt.x) ) continue; dist_num = dy1*dx - dx1*dy; if( dy < 0 ) dist_num = -dist_num; counter += dist_num > 0; } result = sqrt(min_dist_num/min_dist_denom); if( counter % 2 == 0 ) result = -result; } } return result; } /* End of file. */