#!/usr/bin/python # # The full "Square Detector" program. # It loads several images subsequentally and tries to find squares in # each image # from opencv.cv import * from opencv.highgui import * from math import sqrt thresh = 50; img = None; img0 = None; storage = None; wndname = "Square Detection Demo"; def angle( pt1, pt2, pt0 ): dx1 = pt1.x - pt0.x; dy1 = pt1.y - pt0.y; dx2 = pt2.x - pt0.x; dy2 = pt2.y - pt0.y; return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); def findSquares4( img, storage ): N = 11; sz = cvSize( img.width & -2, img.height & -2 ); timg = cvCloneImage( img ); # make a copy of input image gray = cvCreateImage( sz, 8, 1 ); pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 ); # create empty sequence that will contain points - # 4 points per square (the square's vertices) squares = cvCreateSeq( 0, sizeof_CvSeq, sizeof_CvPoint, storage ); squares = CvSeq_CvPoint.cast( squares ) # select the maximum ROI in the image # with the width and height divisible by 2 subimage = cvGetSubRect( timg, cvRect( 0, 0, sz.width, sz.height )) # down-scale and upscale the image to filter out the noise cvPyrDown( subimage, pyr, 7 ); cvPyrUp( pyr, subimage, 7 ); tgray = cvCreateImage( sz, 8, 1 ); # find squares in every color plane of the image for c in range(3): # extract the c-th color plane channels = [None, None, None] channels[c] = tgray cvSplit( subimage, channels[0], channels[1], channels[2], None ) for l in range(N): # hack: use Canny instead of zero threshold level. # Canny helps to catch squares with gradient shading if( l == 0 ): # apply Canny. Take the upper threshold from slider # and set the lower to 0 (which forces edges merging) cvCanny( tgray, gray, 0, thresh, 5 ); # dilate canny output to remove potential # holes between edge segments cvDilate( gray, gray, None, 1 ); else: # apply threshold if l!=0: # tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY ); # find contours and store them all as a list count, contours = cvFindContours( gray, storage, sizeof_CvContour, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) ); if not contours: continue # test each contour for contour in contours.hrange(): # approximate contour with accuracy proportional # to the contour perimeter result = cvApproxPoly( contour, sizeof_CvContour, storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 ); # square contours should have 4 vertices after approximation # relatively large area (to filter out noisy contours) # and be convex. # Note: absolute value of an area is used because # area may be positive or negative - in accordance with the # contour orientation if( result.total == 4 and abs(cvContourArea(result)) > 1000 and cvCheckContourConvexity(result) ): s = 0; for i in range(5): # find minimum angle between joint # edges (maximum of cosine) if( i >= 2 ): t = abs(angle( result[i], result[i-2], result[i-1])) if s<t: s=t # if cosines of all angles are small # (all angles are ~90 degree) then write quandrange # vertices to resultant sequence if( s < 0.3 ): for i in range(4): squares.append( result[i] ) return squares; # the function draws all the squares in the image def drawSquares( img, squares ): cpy = cvCloneImage( img ); # read 4 sequence elements at a time (all vertices of a square) i=0 while i<squares.total: pt = [] # read 4 vertices pt.append( squares[i] ) pt.append( squares[i+1] ) pt.append( squares[i+2] ) pt.append( squares[i+3] ) # draw the square as a closed polyline cvPolyLine( cpy, [pt], 1, CV_RGB(0,255,0), 3, CV_AA, 0 ); i+=4 # show the resultant image cvShowImage( wndname, cpy ); def on_trackbar( a ): if( img ): drawSquares( img, findSquares4( img, storage ) ); names = ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png", "../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ]; if __name__ == "__main__": # create memory storage that will contain all the dynamic data storage = cvCreateMemStorage(0); for name in names: img0 = cvLoadImage( name, 1 ); if not img0: print "Couldn't load %s" % name continue; img = cvCloneImage( img0 ); # create window and a trackbar (slider) with parent "image" and set callback # (the slider regulates upper threshold, passed to Canny edge detector) cvNamedWindow( wndname, 1 ); cvCreateTrackbar( "canny thresh", wndname, thresh, 1000, on_trackbar ); # force the image processing on_trackbar(0); # wait for key. # Also the function cvWaitKey takes care of event processing c = cvWaitKey(0); # clear memory storage - reset free space position cvClearMemStorage( storage ); if( c == '\x1b' ): break; cvDestroyWindow( wndname );