/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_EIGEN2 #include #endif namespace cv { Mat windowedMatchingMask( const vector& keypoints1, const vector& keypoints2, float maxDeltaX, float maxDeltaY ) { if( keypoints1.empty() || keypoints2.empty() ) return Mat(); int n1 = (int)keypoints1.size(), n2 = (int)keypoints2.size(); Mat mask( n1, n2, CV_8UC1 ); for( int i = 0; i < n1; i++ ) { for( int j = 0; j < n2; j++ ) { Point2f diff = keypoints2[j].pt - keypoints1[i].pt; mask.at(i, j) = std::abs(diff.x) < maxDeltaX && std::abs(diff.y) < maxDeltaY; } } return mask; } /****************************************************************************************\ * DescriptorMatcher * \****************************************************************************************/ DescriptorMatcher::DescriptorCollection::DescriptorCollection() {} DescriptorMatcher::DescriptorCollection::DescriptorCollection( const DescriptorCollection& collection ) { mergedDescriptors = collection.mergedDescriptors.clone(); copy( collection.startIdxs.begin(), collection.startIdxs.begin(), startIdxs.begin() ); } DescriptorMatcher::DescriptorCollection::~DescriptorCollection() {} void DescriptorMatcher::DescriptorCollection::set( const vector& descriptors ) { clear(); size_t imageCount = descriptors.size(); CV_Assert( imageCount > 0 ); startIdxs.resize( imageCount ); int dim = -1; int type = -1; startIdxs[0] = 0; for( size_t i = 1; i < imageCount; i++ ) { int s = 0; if( !descriptors[i-1].empty() ) { dim = descriptors[i-1].cols; type = descriptors[i-1].type(); s = descriptors[i-1].rows; } startIdxs[i] = startIdxs[i-1] + s; } if( imageCount == 1 ) { if( descriptors[0].empty() ) return; dim = descriptors[0].cols; type = descriptors[0].type(); } assert( dim > 0 ); int count = startIdxs[imageCount-1] + descriptors[imageCount-1].rows; if( count > 0 ) { mergedDescriptors.create( count, dim, type ); for( size_t i = 0; i < imageCount; i++ ) { if( !descriptors[i].empty() ) { CV_Assert( descriptors[i].cols == dim && descriptors[i].type() == type ); Mat m = mergedDescriptors.rowRange( startIdxs[i], startIdxs[i] + descriptors[i].rows ); descriptors[i].copyTo(m); } } } } void DescriptorMatcher::DescriptorCollection::clear() { startIdxs.clear(); mergedDescriptors.release(); } const Mat DescriptorMatcher::DescriptorCollection::getDescriptor( int imgIdx, int localDescIdx ) const { CV_Assert( imgIdx < (int)startIdxs.size() ); int globalIdx = startIdxs[imgIdx] + localDescIdx; CV_Assert( globalIdx < (int)size() ); return getDescriptor( globalIdx ); } const Mat& DescriptorMatcher::DescriptorCollection::getDescriptors() const { return mergedDescriptors; } const Mat DescriptorMatcher::DescriptorCollection::getDescriptor( int globalDescIdx ) const { CV_Assert( globalDescIdx < size() ); return mergedDescriptors.row( globalDescIdx ); } void DescriptorMatcher::DescriptorCollection::getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const { CV_Assert( (globalDescIdx>=0) && (globalDescIdx < size()) ); std::vector::const_iterator img_it = std::upper_bound(startIdxs.begin(), startIdxs.end(), globalDescIdx); --img_it; imgIdx = (int)(img_it - startIdxs.begin()); localDescIdx = globalDescIdx - (*img_it); } int DescriptorMatcher::DescriptorCollection::size() const { return mergedDescriptors.rows; } /* * DescriptorMatcher */ void convertMatches( const vector >& knnMatches, vector& matches ) { matches.clear(); matches.reserve( knnMatches.size() ); for( size_t i = 0; i < knnMatches.size(); i++ ) { CV_Assert( knnMatches[i].size() <= 1 ); if( !knnMatches[i].empty() ) matches.push_back( knnMatches[i][0] ); } } DescriptorMatcher::~DescriptorMatcher() {} void DescriptorMatcher::add( const vector& descriptors ) { trainDescCollection.insert( trainDescCollection.end(), descriptors.begin(), descriptors.end() ); } const vector& DescriptorMatcher::getTrainDescriptors() const { return trainDescCollection; } void DescriptorMatcher::clear() { trainDescCollection.clear(); } bool DescriptorMatcher::empty() const { return trainDescCollection.empty(); } void DescriptorMatcher::train() {} void DescriptorMatcher::match( const Mat& queryDescriptors, const Mat& trainDescriptors, vector& matches, const Mat& mask ) const { Ptr tempMatcher = clone(true); tempMatcher->add( vector(1, trainDescriptors) ); tempMatcher->match( queryDescriptors, matches, vector(1, mask) ); } void DescriptorMatcher::knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, vector >& matches, int knn, const Mat& mask, bool compactResult ) const { Ptr tempMatcher = clone(true); tempMatcher->add( vector(1, trainDescriptors) ); tempMatcher->knnMatch( queryDescriptors, matches, knn, vector(1, mask), compactResult ); } void DescriptorMatcher::radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, vector >& matches, float maxDistance, const Mat& mask, bool compactResult ) const { Ptr tempMatcher = clone(true); tempMatcher->add( vector(1, trainDescriptors) ); tempMatcher->radiusMatch( queryDescriptors, matches, maxDistance, vector(1, mask), compactResult ); } void DescriptorMatcher::match( const Mat& queryDescriptors, vector& matches, const vector& masks ) { vector > knnMatches; knnMatch( queryDescriptors, knnMatches, 1, masks, true /*compactResult*/ ); convertMatches( knnMatches, matches ); } void DescriptorMatcher::checkMasks( const vector& masks, int queryDescriptorsCount ) const { if( isMaskSupported() && !masks.empty() ) { // Check masks size_t imageCount = trainDescCollection.size(); CV_Assert( masks.size() == imageCount ); for( size_t i = 0; i < imageCount; i++ ) { if( !masks[i].empty() && !trainDescCollection[i].empty() ) { CV_Assert( masks[i].rows == queryDescriptorsCount && masks[i].cols == trainDescCollection[i].rows && masks[i].type() == CV_8UC1 ); } } } } void DescriptorMatcher::knnMatch( const Mat& queryDescriptors, vector >& matches, int knn, const vector& masks, bool compactResult ) { matches.clear(); if( empty() || queryDescriptors.empty() ) return; CV_Assert( knn > 0 ); checkMasks( masks, queryDescriptors.rows ); train(); knnMatchImpl( queryDescriptors, matches, knn, masks, compactResult ); } void DescriptorMatcher::radiusMatch( const Mat& queryDescriptors, vector >& matches, float maxDistance, const vector& masks, bool compactResult ) { matches.clear(); if( empty() || queryDescriptors.empty() ) return; CV_Assert( maxDistance > std::numeric_limits::epsilon() ); checkMasks( masks, queryDescriptors.rows ); train(); radiusMatchImpl( queryDescriptors, matches, maxDistance, masks, compactResult ); } void DescriptorMatcher::read( const FileNode& ) {} void DescriptorMatcher::write( FileStorage& ) const {} bool DescriptorMatcher::isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx ) { return mask.empty() || mask.at(queryIdx, trainIdx); } bool DescriptorMatcher::isMaskedOut( const vector& masks, int queryIdx ) { size_t outCount = 0; for( size_t i = 0; i < masks.size(); i++ ) { if( !masks[i].empty() && (countNonZero(masks[i].row(queryIdx)) == 0) ) outCount++; } return !masks.empty() && outCount == masks.size() ; } /* * Factory function for DescriptorMatcher creating */ Ptr DescriptorMatcher::create( const string& descriptorMatcherType ) { DescriptorMatcher* dm = 0; if( !descriptorMatcherType.compare( "FlannBased" ) ) { dm = new FlannBasedMatcher(); } else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2 { dm = new BruteForceMatcher >(); } else if( !descriptorMatcherType.compare( "BruteForce-L1" ) ) { dm = new BruteForceMatcher >(); } else if( !descriptorMatcherType.compare("BruteForce-Hamming") ) { dm = new BruteForceMatcher(); } else if( !descriptorMatcherType.compare( "BruteForce-HammingLUT") ) { dm = new BruteForceMatcher(); } return dm; } /* * BruteForce L2 specialization */ template<> void BruteForceMatcher >::knnMatchImpl( const Mat& queryDescriptors, vector >& matches, int knn, const vector& masks, bool compactResult ) { #ifndef HAVE_EIGEN2 commonKnnMatchImpl( *this, queryDescriptors, matches, knn, masks, compactResult ); #else CV_Assert( queryDescriptors.type() == CV_32FC1 || queryDescriptors.empty() ); CV_Assert( masks.empty() || masks.size() == trainDescCollection.size() ); matches.reserve(queryDescriptors.rows); size_t imgCount = trainDescCollection.size(); Eigen::Matrix e_query_t; vector > e_trainCollection(trainDescCollection.size()); vector > e_trainNorms2(trainDescCollection.size()); cv2eigen( queryDescriptors.t(), e_query_t); for( size_t i = 0; i < trainDescCollection.size(); i++ ) { cv2eigen( trainDescCollection[i], e_trainCollection[i] ); e_trainNorms2[i] = e_trainCollection[i].rowwise().squaredNorm() / 2; } vector > e_allDists( imgCount ); // distances between one query descriptor and all train descriptors for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) { if( isMaskedOut( masks, qIdx ) ) { if( !compactResult ) // push empty vector matches.push_back( vector() ); } else { float queryNorm2 = e_query_t.col(qIdx).squaredNorm(); // 1. compute distances between i-th query descriptor and all train descriptors for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) { CV_Assert( masks.empty() || masks[iIdx].empty() || ( masks[iIdx].rows == queryDescriptors.rows && masks[iIdx].cols == trainDescCollection[iIdx].rows && masks[iIdx].type() == CV_8UC1 ) ); CV_Assert( trainDescCollection[iIdx].type() == CV_32FC1 || trainDescCollection[iIdx].empty() ); CV_Assert( queryDescriptors.cols == trainDescCollection[iIdx].cols ); e_allDists[iIdx] = e_trainCollection[iIdx] *e_query_t.col(qIdx); e_allDists[iIdx] -= e_trainNorms2[iIdx]; if( !masks.empty() && !masks[iIdx].empty() ) { const uchar* maskPtr = (uchar*)masks[iIdx].ptr(qIdx); for( int c = 0; c < masks[iIdx].cols; c++ ) { if( maskPtr[c] == 0 ) e_allDists[iIdx](c) = -std::numeric_limits::max(); } } } // 2. choose knn nearest matches for query[i] matches.push_back( vector() ); vector >::reverse_iterator curMatches = matches.rbegin(); for( int k = 0; k < knn; k++ ) { float totalMaxCoeff = -std::numeric_limits::max(); int bestTrainIdx = -1, bestImgIdx = -1; for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) { int loc; float curMaxCoeff = e_allDists[iIdx].maxCoeff( &loc ); if( curMaxCoeff > totalMaxCoeff ) { totalMaxCoeff = curMaxCoeff; bestTrainIdx = loc; bestImgIdx = iIdx; } } if( bestTrainIdx == -1 ) break; e_allDists[bestImgIdx](bestTrainIdx) = -std::numeric_limits::max(); curMatches->push_back( DMatch(qIdx, bestTrainIdx, bestImgIdx, sqrt((-2)*totalMaxCoeff + queryNorm2)) ); } std::sort( curMatches->begin(), curMatches->end() ); } } #endif } template<> void BruteForceMatcher >::radiusMatchImpl( const Mat& queryDescriptors, vector >& matches, float maxDistance, const vector& masks, bool compactResult ) { #ifndef HAVE_EIGEN2 commonRadiusMatchImpl( *this, queryDescriptors, matches, maxDistance, masks, compactResult ); #else CV_Assert( queryDescriptors.type() == CV_32FC1 || queryDescriptors.empty() ); CV_Assert( masks.empty() || masks.size() == trainDescCollection.size() ); matches.reserve(queryDescriptors.rows); size_t imgCount = trainDescCollection.size(); Eigen::Matrix e_query_t; vector > e_trainCollection(trainDescCollection.size()); vector > e_trainNorms2(trainDescCollection.size()); cv2eigen( queryDescriptors.t(), e_query_t); for( size_t i = 0; i < trainDescCollection.size(); i++ ) { cv2eigen( trainDescCollection[i], e_trainCollection[i] ); e_trainNorms2[i] = e_trainCollection[i].rowwise().squaredNorm() / 2; } vector > e_allDists( imgCount ); // distances between one query descriptor and all train descriptors for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) { if( isMaskedOut( masks, qIdx ) ) { if( !compactResult ) // push empty vector matches.push_back( vector() ); } else { float queryNorm2 = e_query_t.col(qIdx).squaredNorm(); // 1. compute distances between i-th query descriptor and all train descriptors for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) { CV_Assert( masks.empty() || masks[iIdx].empty() || ( masks[iIdx].rows == queryDescriptors.rows && masks[iIdx].cols == trainDescCollection[iIdx].rows && masks[iIdx].type() == CV_8UC1 ) ); CV_Assert( trainDescCollection[iIdx].type() == CV_32FC1 || trainDescCollection[iIdx].empty() ); CV_Assert( queryDescriptors.cols == trainDescCollection[iIdx].cols ); e_allDists[iIdx] = e_trainCollection[iIdx] *e_query_t.col(qIdx); e_allDists[iIdx] -= e_trainNorms2[iIdx]; } matches.push_back( vector() ); vector >::reverse_iterator curMatches = matches.rbegin(); for( size_t iIdx = 0; iIdx < imgCount; iIdx++ ) { assert( e_allDists[iIdx].rows() == trainDescCollection[iIdx].rows ); for( int tIdx = 0; tIdx < e_allDists[iIdx].rows(); tIdx++ ) { if( masks.empty() || isPossibleMatch(masks[iIdx], qIdx, tIdx) ) { float d = sqrt((-2)*e_allDists[iIdx](tIdx) + queryNorm2); if( d < maxDistance ) curMatches->push_back( DMatch( qIdx, tIdx, iIdx, d ) ); } } } std::sort( curMatches->begin(), curMatches->end() ); } } #endif } /* * Flann based matcher */ FlannBasedMatcher::FlannBasedMatcher( const Ptr& _indexParams, const Ptr& _searchParams ) : indexParams(_indexParams), searchParams(_searchParams), addedDescCount(0) { CV_Assert( !_indexParams.empty() ); CV_Assert( !_searchParams.empty() ); } void FlannBasedMatcher::add( const vector& descriptors ) { DescriptorMatcher::add( descriptors ); for( size_t i = 0; i < descriptors.size(); i++ ) { addedDescCount += descriptors[i].rows; } } void FlannBasedMatcher::clear() { DescriptorMatcher::clear(); mergedDescriptors.clear(); flannIndex.release(); addedDescCount = 0; } void FlannBasedMatcher::train() { if( flannIndex.empty() || mergedDescriptors.size() < addedDescCount ) { mergedDescriptors.set( trainDescCollection ); flannIndex = new flann::Index( mergedDescriptors.getDescriptors(), *indexParams ); } } bool FlannBasedMatcher::isMaskSupported() const { return false; } Ptr FlannBasedMatcher::clone( bool emptyTrainData ) const { FlannBasedMatcher* matcher = new FlannBasedMatcher(indexParams, searchParams); if( !emptyTrainData ) { CV_Error( CV_StsNotImplemented, "deep clone functionality is not implemented, because " "Flann::Index has not copy constructor or clone method "); //matcher->flannIndex; matcher->addedDescCount = addedDescCount; matcher->mergedDescriptors = DescriptorCollection( mergedDescriptors ); std::transform( trainDescCollection.begin(), trainDescCollection.end(), matcher->trainDescCollection.begin(), clone_op ); } return matcher; } void FlannBasedMatcher::convertToDMatches( const DescriptorCollection& collection, const Mat& indices, const Mat& dists, vector >& matches ) { matches.resize( indices.rows ); for( int i = 0; i < indices.rows; i++ ) { for( int j = 0; j < indices.cols; j++ ) { int idx = indices.at(i, j); if( idx >= 0 ) { int imgIdx, trainIdx; collection.getLocalIdx( idx, imgIdx, trainIdx ); matches[i].push_back( DMatch( i, trainIdx, imgIdx, std::sqrt(dists.at(i,j))) ); } } } } void FlannBasedMatcher::knnMatchImpl( const Mat& queryDescriptors, vector >& matches, int knn, const vector& /*masks*/, bool /*compactResult*/ ) { Mat indices( queryDescriptors.rows, knn, CV_32SC1 ); Mat dists( queryDescriptors.rows, knn, CV_32FC1); flannIndex->knnSearch( queryDescriptors, indices, dists, knn, *searchParams ); convertToDMatches( mergedDescriptors, indices, dists, matches ); } void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector >& matches, float maxDistance, const vector& /*masks*/, bool /*compactResult*/ ) { const int count = mergedDescriptors.size(); // TODO do count as param? Mat indices( queryDescriptors.rows, count, CV_32SC1, Scalar::all(-1) ); Mat dists( queryDescriptors.rows, count, CV_32FC1, Scalar::all(-1) ); for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) { Mat queryDescriptorsRow = queryDescriptors.row(qIdx); Mat indicesRow = indices.row(qIdx); Mat distsRow = dists.row(qIdx); flannIndex->radiusSearch( queryDescriptorsRow, indicesRow, distsRow, maxDistance*maxDistance, *searchParams ); } convertToDMatches( mergedDescriptors, indices, dists, matches ); } /****************************************************************************************\ * GenericDescriptorMatcher * \****************************************************************************************/ /* * KeyPointCollection */ GenericDescriptorMatcher::KeyPointCollection::KeyPointCollection() : pointCount(0) {} GenericDescriptorMatcher::KeyPointCollection::KeyPointCollection( const KeyPointCollection& collection ) { pointCount = collection.pointCount; std::transform( collection.images.begin(), collection.images.end(), images.begin(), clone_op ); keypoints.resize( collection.keypoints.size() ); for( size_t i = 0; i < keypoints.size(); i++ ) copy( collection.keypoints[i].begin(), collection.keypoints[i].end(), keypoints[i].begin() ); copy( collection.startIndices.begin(), collection.startIndices.end(), startIndices.begin() ); } void GenericDescriptorMatcher::KeyPointCollection::add( const vector& _images, const vector >& _points ) { CV_Assert( !_images.empty() ); CV_Assert( _images.size() == _points.size() ); images.insert( images.end(), _images.begin(), _images.end() ); keypoints.insert( keypoints.end(), _points.begin(), _points.end() ); for( size_t i = 0; i < _points.size(); i++ ) pointCount += (int)_points[i].size(); size_t prevSize = startIndices.size(), addSize = _images.size(); startIndices.resize( prevSize + addSize ); if( prevSize == 0 ) startIndices[prevSize] = 0; //first else startIndices[prevSize] = (int)(startIndices[prevSize-1] + keypoints[prevSize-1].size()); for( size_t i = prevSize + 1; i < prevSize + addSize; i++ ) { startIndices[i] = (int)(startIndices[i - 1] + keypoints[i - 1].size()); } } void GenericDescriptorMatcher::KeyPointCollection::clear() { pointCount = 0; images.clear(); keypoints.clear(); startIndices.clear(); } size_t GenericDescriptorMatcher::KeyPointCollection::keypointCount() const { return pointCount; } size_t GenericDescriptorMatcher::KeyPointCollection::imageCount() const { return images.size(); } const vector >& GenericDescriptorMatcher::KeyPointCollection::getKeypoints() const { return keypoints; } const vector& GenericDescriptorMatcher::KeyPointCollection::getKeypoints( int imgIdx ) const { CV_Assert( imgIdx < (int)imageCount() ); return keypoints[imgIdx]; } const KeyPoint& GenericDescriptorMatcher::KeyPointCollection::getKeyPoint( int imgIdx, int localPointIdx ) const { CV_Assert( imgIdx < (int)images.size() ); CV_Assert( localPointIdx < (int)keypoints[imgIdx].size() ); return keypoints[imgIdx][localPointIdx]; } const KeyPoint& GenericDescriptorMatcher::KeyPointCollection::getKeyPoint( int globalPointIdx ) const { int imgIdx, localPointIdx; getLocalIdx( globalPointIdx, imgIdx, localPointIdx ); return keypoints[imgIdx][localPointIdx]; } void GenericDescriptorMatcher::KeyPointCollection::getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const { imgIdx = -1; CV_Assert( globalPointIdx < (int)keypointCount() ); for( size_t i = 1; i < startIndices.size(); i++ ) { if( globalPointIdx < startIndices[i] ) { imgIdx = (int)(i - 1); break; } } imgIdx = imgIdx == -1 ? (int)(startIndices.size() - 1) : imgIdx; localPointIdx = globalPointIdx - startIndices[imgIdx]; } const vector& GenericDescriptorMatcher::KeyPointCollection::getImages() const { return images; } const Mat& GenericDescriptorMatcher::KeyPointCollection::getImage( int imgIdx ) const { CV_Assert( imgIdx < (int)imageCount() ); return images[imgIdx]; } /* * GenericDescriptorMatcher */ GenericDescriptorMatcher::GenericDescriptorMatcher() {} GenericDescriptorMatcher::~GenericDescriptorMatcher() {} void GenericDescriptorMatcher::add( const vector& images, vector >& keypoints ) { CV_Assert( !images.empty() ); CV_Assert( images.size() == keypoints.size() ); for( size_t i = 0; i < images.size(); i++ ) { CV_Assert( !images[i].empty() ); KeyPointsFilter::runByImageBorder( keypoints[i], images[i].size(), 0 ); KeyPointsFilter::runByKeypointSize( keypoints[i], std::numeric_limits::epsilon() ); } trainPointCollection.add( images, keypoints ); } const vector& GenericDescriptorMatcher::getTrainImages() const { return trainPointCollection.getImages(); } const vector >& GenericDescriptorMatcher::getTrainKeypoints() const { return trainPointCollection.getKeypoints(); } void GenericDescriptorMatcher::clear() { trainPointCollection.clear(); } void GenericDescriptorMatcher::train() {} void GenericDescriptorMatcher::classify( const Mat& queryImage, vector& queryKeypoints, const Mat& trainImage, vector& trainKeypoints ) const { vector matches; match( queryImage, queryKeypoints, trainImage, trainKeypoints, matches ); // remap keypoint indices to descriptors for( size_t i = 0; i < matches.size(); i++ ) queryKeypoints[matches[i].queryIdx].class_id = trainKeypoints[matches[i].trainIdx].class_id; } void GenericDescriptorMatcher::classify( const Mat& queryImage, vector& queryKeypoints ) { vector matches; match( queryImage, queryKeypoints, matches ); // remap keypoint indices to descriptors for( size_t i = 0; i < matches.size(); i++ ) queryKeypoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id; } void GenericDescriptorMatcher::match( const Mat& queryImage, vector& queryKeypoints, const Mat& trainImage, vector& trainKeypoints, vector& matches, const Mat& mask ) const { Ptr tempMatcher = clone( true ); vector > vecTrainPoints(1, trainKeypoints); tempMatcher->add( vector(1, trainImage), vecTrainPoints ); tempMatcher->match( queryImage, queryKeypoints, matches, vector(1, mask) ); vecTrainPoints[0].swap( trainKeypoints ); } void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector& queryKeypoints, const Mat& trainImage, vector& trainKeypoints, vector >& matches, int knn, const Mat& mask, bool compactResult ) const { Ptr tempMatcher = clone( true ); vector > vecTrainPoints(1, trainKeypoints); tempMatcher->add( vector(1, trainImage), vecTrainPoints ); tempMatcher->knnMatch( queryImage, queryKeypoints, matches, knn, vector(1, mask), compactResult ); vecTrainPoints[0].swap( trainKeypoints ); } void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector& queryKeypoints, const Mat& trainImage, vector& trainKeypoints, vector >& matches, float maxDistance, const Mat& mask, bool compactResult ) const { Ptr tempMatcher = clone( true ); vector > vecTrainPoints(1, trainKeypoints); tempMatcher->add( vector(1, trainImage), vecTrainPoints ); tempMatcher->radiusMatch( queryImage, queryKeypoints, matches, maxDistance, vector(1, mask), compactResult ); vecTrainPoints[0].swap( trainKeypoints ); } void GenericDescriptorMatcher::match( const Mat& queryImage, vector& queryKeypoints, vector& matches, const vector& masks ) { vector > knnMatches; knnMatch( queryImage, queryKeypoints, knnMatches, 1, masks, false ); convertMatches( knnMatches, matches ); } void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector& queryKeypoints, vector >& matches, int knn, const vector& masks, bool compactResult ) { matches.clear(); if( queryImage.empty() || queryKeypoints.empty() ) return; KeyPointsFilter::runByImageBorder( queryKeypoints, queryImage.size(), 0 ); KeyPointsFilter::runByKeypointSize( queryKeypoints, std::numeric_limits::epsilon() ); train(); knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult ); } void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector& queryKeypoints, vector >& matches, float maxDistance, const vector& masks, bool compactResult ) { matches.clear(); if( queryImage.empty() || queryKeypoints.empty() ) return; KeyPointsFilter::runByImageBorder( queryKeypoints, queryImage.size(), 0 ); KeyPointsFilter::runByKeypointSize( queryKeypoints, std::numeric_limits::epsilon() ); train(); radiusMatchImpl( queryImage, queryKeypoints, matches, maxDistance, masks, compactResult ); } void GenericDescriptorMatcher::read( const FileNode& ) {} void GenericDescriptorMatcher::write( FileStorage& ) const {} bool GenericDescriptorMatcher::empty() const { return true; } /* * Factory function for GenericDescriptorMatch creating */ Ptr GenericDescriptorMatcher::create( const string& genericDescritptorMatcherType, const string ¶msFilename ) { Ptr descriptorMatcher; if( ! genericDescritptorMatcherType.compare("ONEWAY") ) { descriptorMatcher = new OneWayDescriptorMatcher(); } else if( ! genericDescritptorMatcherType.compare("FERN") ) { descriptorMatcher = new FernDescriptorMatcher(); } if( !paramsFilename.empty() && !descriptorMatcher.empty() ) { FileStorage fs = FileStorage( paramsFilename, FileStorage::READ ); if( fs.isOpened() ) { descriptorMatcher->read( fs.root() ); fs.release(); } } return descriptorMatcher; } /****************************************************************************************\ * OneWayDescriptorMatcher * \****************************************************************************************/ OneWayDescriptorMatcher::Params::Params( int _poseCount, Size _patchSize, string _pcaFilename, string _trainPath, string _trainImagesList, float _minScale, float _maxScale, float _stepScale ) : poseCount(_poseCount), patchSize(_patchSize), pcaFilename(_pcaFilename), trainPath(_trainPath), trainImagesList(_trainImagesList), minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {} OneWayDescriptorMatcher::OneWayDescriptorMatcher( const Params& _params) { initialize(_params); } OneWayDescriptorMatcher::~OneWayDescriptorMatcher() {} void OneWayDescriptorMatcher::initialize( const Params& _params, const Ptr& _base ) { clear(); if( _base.empty() ) base = _base; params = _params; } void OneWayDescriptorMatcher::clear() { GenericDescriptorMatcher::clear(); prevTrainCount = 0; if( !base.empty() ) base->clear(); } void OneWayDescriptorMatcher::train() { if( base.empty() || prevTrainCount < (int)trainPointCollection.keypointCount() ) { base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename, params.trainPath, params.trainImagesList, params.minScale, params.maxScale, params.stepScale ); base->Allocate( (int)trainPointCollection.keypointCount() ); prevTrainCount = (int)trainPointCollection.keypointCount(); const vector >& points = trainPointCollection.getKeypoints(); int count = 0; for( size_t i = 0; i < points.size(); i++ ) { IplImage _image = trainPointCollection.getImage((int)i); for( size_t j = 0; j < points[i].size(); j++ ) base->InitializeDescriptor( count++, &_image, points[i][j], "" ); } #if defined(_KDTREE) base->ConvertDescriptorsArrayToTree(); #endif } } bool OneWayDescriptorMatcher::isMaskSupported() { return false; } void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector& queryKeypoints, vector >& matches, int knn, const vector& /*masks*/, bool /*compactResult*/ ) { train(); CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case matches.resize( queryKeypoints.size() ); IplImage _qimage = queryImage; for( size_t i = 0; i < queryKeypoints.size(); i++ ) { int descIdx = -1, poseIdx = -1; float distance; base->FindDescriptor( &_qimage, queryKeypoints[i].pt, descIdx, poseIdx, distance ); matches[i].push_back( DMatch((int)i, descIdx, distance) ); } } void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector& queryKeypoints, vector >& matches, float maxDistance, const vector& /*masks*/, bool /*compactResult*/ ) { train(); matches.resize( queryKeypoints.size() ); IplImage _qimage = queryImage; for( size_t i = 0; i < queryKeypoints.size(); i++ ) { int descIdx = -1, poseIdx = -1; float distance; base->FindDescriptor( &_qimage, queryKeypoints[i].pt, descIdx, poseIdx, distance ); if( distance < maxDistance ) matches[i].push_back( DMatch((int)i, descIdx, distance) ); } } void OneWayDescriptorMatcher::read( const FileNode &fn ) { base = new OneWayDescriptorObject( params.patchSize, params.poseCount, string (), string (), string (), params.minScale, params.maxScale, params.stepScale ); base->Read (fn); } void OneWayDescriptorMatcher::write( FileStorage& fs ) const { base->Write (fs); } bool OneWayDescriptorMatcher::empty() const { return base.empty() || base->empty(); } Ptr OneWayDescriptorMatcher::clone( bool emptyTrainData ) const { OneWayDescriptorMatcher* matcher = new OneWayDescriptorMatcher( params ); if( !emptyTrainData ) { CV_Error( CV_StsNotImplemented, "deep clone functionality is not implemented, because " "OneWayDescriptorBase has not copy constructor or clone method "); //matcher->base; matcher->params = params; matcher->prevTrainCount = prevTrainCount; matcher->trainPointCollection = trainPointCollection; } return matcher; } /****************************************************************************************\ * FernDescriptorMatcher * \****************************************************************************************/ FernDescriptorMatcher::Params::Params( int _nclasses, int _patchSize, int _signatureSize, int _nstructs, int _structSize, int _nviews, int _compressionMethod, const PatchGenerator& _patchGenerator ) : nclasses(_nclasses), patchSize(_patchSize), signatureSize(_signatureSize), nstructs(_nstructs), structSize(_structSize), nviews(_nviews), compressionMethod(_compressionMethod), patchGenerator(_patchGenerator) {} FernDescriptorMatcher::Params::Params( const string& _filename ) { filename = _filename; } FernDescriptorMatcher::FernDescriptorMatcher( const Params& _params ) { prevTrainCount = 0; params = _params; if( !params.filename.empty() ) { classifier = new FernClassifier; FileStorage fs(params.filename, FileStorage::READ); if( fs.isOpened() ) classifier->read( fs.getFirstTopLevelNode() ); } } FernDescriptorMatcher::~FernDescriptorMatcher() {} void FernDescriptorMatcher::clear() { GenericDescriptorMatcher::clear(); classifier.release(); prevTrainCount = 0; } void FernDescriptorMatcher::train() { if( classifier.empty() || prevTrainCount < (int)trainPointCollection.keypointCount() ) { assert( params.filename.empty() ); vector > points( trainPointCollection.imageCount() ); for( size_t imgIdx = 0; imgIdx < trainPointCollection.imageCount(); imgIdx++ ) KeyPoint::convert( trainPointCollection.getKeypoints((int)imgIdx), points[imgIdx] ); classifier = new FernClassifier( points, trainPointCollection.getImages(), vector >(), 0, // each points is a class params.patchSize, params.signatureSize, params.nstructs, params.structSize, params.nviews, params.compressionMethod, params.patchGenerator ); } } bool FernDescriptorMatcher::isMaskSupported() { return false; } void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt, float& bestProb, int& bestMatchIdx, vector& signature ) { (*classifier)( image, pt, signature); bestProb = -FLT_MAX; bestMatchIdx = -1; for( int ci = 0; ci < classifier->getClassCount(); ci++ ) { if( signature[ci] > bestProb ) { bestProb = signature[ci]; bestMatchIdx = ci; } } } void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector& queryKeypoints, vector >& matches, int knn, const vector& /*masks*/, bool /*compactResult*/ ) { train(); matches.resize( queryKeypoints.size() ); vector signature( (size_t)classifier->getClassCount() ); for( size_t queryIdx = 0; queryIdx < queryKeypoints.size(); queryIdx++ ) { (*classifier)( queryImage, queryKeypoints[queryIdx].pt, signature); for( int k = 0; k < knn; k++ ) { DMatch bestMatch; size_t best_ci = 0; for( size_t ci = 0; ci < signature.size(); ci++ ) { if( -signature[ci] < bestMatch.distance ) { int imgIdx = -1, trainIdx = -1; trainPointCollection.getLocalIdx( (int)ci , imgIdx, trainIdx ); bestMatch = DMatch( (int)queryIdx, trainIdx, imgIdx, -signature[ci] ); best_ci = ci; } } if( bestMatch.trainIdx == -1 ) break; signature[best_ci] = -std::numeric_limits::max(); matches[queryIdx].push_back( bestMatch ); } } } void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector& queryKeypoints, vector >& matches, float maxDistance, const vector& /*masks*/, bool /*compactResult*/ ) { train(); matches.resize( queryKeypoints.size() ); vector signature( (size_t)classifier->getClassCount() ); for( size_t i = 0; i < queryKeypoints.size(); i++ ) { (*classifier)( queryImage, queryKeypoints[i].pt, signature); for( int ci = 0; ci < classifier->getClassCount(); ci++ ) { if( -signature[ci] < maxDistance ) { int imgIdx = -1, trainIdx = -1; trainPointCollection.getLocalIdx( ci , imgIdx, trainIdx ); matches[i].push_back( DMatch( (int)i, trainIdx, imgIdx, -signature[ci] ) ); } } } } void FernDescriptorMatcher::read( const FileNode &fn ) { params.nclasses = fn["nclasses"]; params.patchSize = fn["patchSize"]; params.signatureSize = fn["signatureSize"]; params.nstructs = fn["nstructs"]; params.structSize = fn["structSize"]; params.nviews = fn["nviews"]; params.compressionMethod = fn["compressionMethod"]; //classifier->read(fn); } void FernDescriptorMatcher::write( FileStorage& fs ) const { fs << "nclasses" << params.nclasses; fs << "patchSize" << params.patchSize; fs << "signatureSize" << params.signatureSize; fs << "nstructs" << params.nstructs; fs << "structSize" << params.structSize; fs << "nviews" << params.nviews; fs << "compressionMethod" << params.compressionMethod; // classifier->write(fs); } bool FernDescriptorMatcher::empty() const { return classifier.empty() || classifier->empty(); } Ptr FernDescriptorMatcher::clone( bool emptyTrainData ) const { FernDescriptorMatcher* matcher = new FernDescriptorMatcher( params ); if( !emptyTrainData ) { CV_Error( CV_StsNotImplemented, "deep clone dunctionality is not implemented, because " "FernClassifier has not copy constructor or clone method "); //matcher->classifier; matcher->params = params; matcher->prevTrainCount = prevTrainCount; matcher->trainPointCollection = trainPointCollection; } return matcher; } /****************************************************************************************\ * VectorDescriptorMatcher * \****************************************************************************************/ VectorDescriptorMatcher::VectorDescriptorMatcher( const Ptr& _extractor, const Ptr& _matcher ) : extractor( _extractor ), matcher( _matcher ) { CV_Assert( !extractor.empty() && !matcher.empty() ); } VectorDescriptorMatcher::~VectorDescriptorMatcher() {} void VectorDescriptorMatcher::add( const vector& imgCollection, vector >& pointCollection ) { vector descriptors; extractor->compute( imgCollection, pointCollection, descriptors ); matcher->add( descriptors ); trainPointCollection.add( imgCollection, pointCollection ); } void VectorDescriptorMatcher::clear() { //extractor->clear(); matcher->clear(); GenericDescriptorMatcher::clear(); } void VectorDescriptorMatcher::train() { matcher->train(); } bool VectorDescriptorMatcher::isMaskSupported() { return matcher->isMaskSupported(); } void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector& queryKeypoints, vector >& matches, int knn, const vector& masks, bool compactResult ) { Mat queryDescriptors; extractor->compute( queryImage, queryKeypoints, queryDescriptors ); matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult ); } void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector& queryKeypoints, vector >& matches, float maxDistance, const vector& masks, bool compactResult ) { Mat queryDescriptors; extractor->compute( queryImage, queryKeypoints, queryDescriptors ); matcher->radiusMatch( queryDescriptors, matches, maxDistance, masks, compactResult ); } void VectorDescriptorMatcher::read( const FileNode& fn ) { GenericDescriptorMatcher::read(fn); extractor->read(fn); } void VectorDescriptorMatcher::write (FileStorage& fs) const { GenericDescriptorMatcher::write(fs); extractor->write (fs); } bool VectorDescriptorMatcher::empty() const { return extractor.empty() || extractor->empty() || matcher.empty() || matcher->empty(); } Ptr VectorDescriptorMatcher::clone( bool emptyTrainData ) const { // TODO clone extractor return new VectorDescriptorMatcher( extractor, matcher->clone(emptyTrainData) ); } }