#include "ml.h" #include /* The sample demonstrates how to use different decision trees. */ void print_result(float train_err, float test_err, const CvMat* var_imp) { printf( "train error %f\n", train_err ); printf( "test error %f\n\n", test_err ); if (var_imp) { bool is_flt = false; if ( CV_MAT_TYPE( var_imp->type ) == CV_32FC1) is_flt = true; printf( "variable impotance\n" ); for( int i = 0; i < var_imp->cols; i++) { printf( "%d %f\n", i, is_flt ? var_imp->data.fl[i] : var_imp->data.db[i] ); } } printf("\n"); } int main() { const int train_sample_count = 300; //#define LEPIOTA #ifdef LEPIOTA const char* filename = "../../../OpenCV/samples/c/agaricus-lepiota.data"; #else const char* filename = "../../../OpenCV/samples/c/waveform.data"; #endif CvDTree dtree; CvBoost boost; CvRTrees rtrees; CvERTrees ertrees; CvGBTrees gbtrees; CvMLData data; CvTrainTestSplit spl( train_sample_count ); if ( data.read_csv( filename ) == 0) { #ifdef LEPIOTA data.set_response_idx( 0 ); #else data.set_response_idx( 21 ); data.change_var_type( 21, CV_VAR_CATEGORICAL ); #endif data.set_train_test_split( &spl ); printf("======DTREE=====\n"); dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 )); print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() ); #ifdef LEPIOTA printf("======BOOST=====\n"); boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0)); print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data ), 0 ); #endif printf("======RTREES=====\n"); rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER )); print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() ); printf("======ERTREES=====\n"); ertrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER )); print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() ); printf("======GBTREES=====\n"); gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.05f, 0.6f, 10, true)); print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); } else printf("File can not be read"); return 0; }