Common Interfaces of Descriptor Matchers ======================================== .. highlight:: cpp Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily between different algorithms solving the same problem. This section is devoted to matching descriptors that are represented as vectors in a multidimensional space. All objects that implement ''vector'' descriptor matchers inherit :func:`DescriptorMatcher` interface. .. index:: DMatch .. _DMatch: DMatch ------ .. c:type:: DMatch Match between two keypoint descriptors: query descriptor index, train descriptor index, train image index and distance between descriptors. :: struct DMatch { DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(std::numeric_limits::max()) {} DMatch( int _queryIdx, int _trainIdx, float _distance ) : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} int queryIdx; // query descriptor index int trainIdx; // train descriptor index int imgIdx; // train image index float distance; // less is better bool operator<( const DMatch &m ) const; }; .. .. index:: DescriptorMatcher .. _DescriptorMatcher: DescriptorMatcher ----------------- .. c:type:: DescriptorMatcher Abstract base class for matching keypoint descriptors. It has two groups of match methods: for matching descriptors of one image with other image or with image set. :: class DescriptorMatcher { public: virtual ~DescriptorMatcher(); virtual void add( const vector& descriptors ); const vector& getTrainDescriptors() const; virtual void clear(); bool empty() const; virtual bool isMaskSupported() const = 0; virtual void train(); /* * Group of methods to match descriptors from image pair. */ void match( const Mat& queryDescriptors, const Mat& trainDescriptors, vector& matches, const Mat& mask=Mat() ) const; void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, vector >& matches, int k, const Mat& mask=Mat(), bool compactResult=false ) const; void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, vector >& matches, float maxDistance, const Mat& mask=Mat(), bool compactResult=false ) const; /* * Group of methods to match descriptors from one image to image set. */ void match( const Mat& queryDescriptors, vector& matches, const vector& masks=vector() ); void knnMatch( const Mat& queryDescriptors, vector >& matches, int k, const vector& masks=vector(), bool compactResult=false ); void radiusMatch( const Mat& queryDescriptors, vector >& matches, float maxDistance, const vector& masks=vector(), bool compactResult=false ); virtual void read( const FileNode& ); virtual void write( FileStorage& ) const; virtual Ptr clone( bool emptyTrainData=false ) const = 0; static Ptr create( const string& descriptorMatcherType ); protected: vector trainDescCollection; ... }; .. .. index:: DescriptorMatcher::add DescriptorMatcher::add -------------------------- ```` .. c:function:: void add( const vector\& descriptors ) Add descriptors to train descriptor collection. If collection trainDescCollectionis not empty the new descriptors are added to existing train descriptors. :param descriptors: Descriptors to add. Each ``descriptors[i]`` is a set of descriptors from the same (one) train image. .. index:: DescriptorMatcher::getTrainDescriptors DescriptorMatcher::getTrainDescriptors ------------------------------------------ ```` .. c:function:: const vector\& getTrainDescriptors() const Returns constant link to the train descriptor collection (i.e. trainDescCollection). .. index:: DescriptorMatcher::clear DescriptorMatcher::clear ---------------------------- .. c:function:: void DescriptorMatcher::clear() Clear train descriptor collection. .. index:: DescriptorMatcher::empty DescriptorMatcher::empty ---------------------------- .. c:function:: bool DescriptorMatcher::empty() const Return true if there are not train descriptors in collection. .. index:: DescriptorMatcher::isMaskSupported DescriptorMatcher::isMaskSupported -------------------------------------- .. c:function:: bool DescriptorMatcher::isMaskSupported() Returns true if descriptor matcher supports masking permissible matches. .. index:: DescriptorMatcher::train DescriptorMatcher::train ---------------------------- .. c:function:: void DescriptorMatcher::train() Train descriptor matcher (e.g. train flann index). In all methods to match the method train() is run every time before matching. Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation of this method, other matchers realy train their inner structures (e.g. FlannBasedMatcher trains flann::Index) .. index:: DescriptorMatcher::match DescriptorMatcher::match ---------------------------- ```` ```` ```` ```` .. c:function:: void DescriptorMatcher::match( const Mat\& queryDescriptors, const Mat\& trainDescriptors, vector\& matches, const Mat\& mask=Mat() ) const Find the best match for each descriptor from a query set with train descriptors. Supposed that the query descriptors are of keypoints detected on the same query image. In first variant of this method train descriptors are set as input argument and supposed that they are of keypoints detected on the same train image. In second variant of the method train descriptors collection that was set using addmethod is used. Optional mask (or masks) can be set to describe which descriptors can be matched. queryDescriptors[i]can be matched with trainDescriptors[j]only if mask.at(i,j)is non-zero. .. c:function:: void DescriptorMatcher::match( const Mat\& queryDescriptors, vector\& matches, const vector\& masks=vector() ) :param queryDescriptors: Query set of descriptors. :param trainDescriptors: Train set of descriptors. This will not be added to train descriptors collection stored in class object. :param matches: Matches. If some query descriptor masked out in ``mask`` no match will be added for this descriptor. So ``matches`` size may be less query descriptors count. :param mask: Mask specifying permissible matches between input query and train matrices of descriptors. :param masks: The set of masks. Each ``masks[i]`` specifies permissible matches between input query descriptors and stored train descriptors from i-th image (i.e. ``trainDescCollection[i])`` . .. index:: DescriptorMatcher::knnMatch DescriptorMatcher::knnMatch ------------------------------- :func:`DescriptorMatcher::match` .. c:function:: void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors, const Mat\& trainDescriptors, vector >\& matches, int k, const Mat\& mask=Mat(), bool compactResult=false ) const Find the k best matches for each descriptor from a query set with train descriptors. Found k (or less if not possible) matches are returned in distance increasing order. Details about query and train descriptors see in . .. c:function:: void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors, vector >\& matches, int k, const vector\& masks=vector(), bool compactResult=false ) :param queryDescriptors, trainDescriptors, mask, masks: See in :func:`DescriptorMatcher::match` . :param matches: Mathes. Each ``matches[i]`` is k or less matches for the same query descriptor. :param k: Count of best matches will be found per each query descriptor (or less if it's not possible). :param compactResult: It's used when mask (or masks) is not empty. If ``compactResult`` is false ``matches`` vector will have the same size as ``queryDescriptors`` rows. If ``compactResult`` is true ``matches`` vector will not contain matches for fully masked out query descriptors. .. index:: DescriptorMatcher::radiusMatch DescriptorMatcher::radiusMatch ---------------------------------- :func:`DescriptorMatcher::match` .. c:function:: void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors, const Mat\& trainDescriptors, vector >\& matches, float maxDistance, const Mat\& mask=Mat(), bool compactResult=false ) const Find the best matches for each query descriptor which have distance less than given threshold. Found matches are returned in distance increasing order. Details about query and train descriptors see in . .. c:function:: void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors, vector >\& matches, float maxDistance, const vector\& masks=vector(), bool compactResult=false ) :param queryDescriptors, trainDescriptors, mask, masks: See in :func:`DescriptorMatcher::match` . :param matches, compactResult: See in :func:`DescriptorMatcher::knnMatch` . :param maxDistance: The threshold to found match distances. .. index:: DescriptorMatcher::clone DescriptorMatcher::clone ---------------------------- .. c:function:: Ptr \\DescriptorMatcher::clone( bool emptyTrainData ) const Clone the matcher. :param emptyTrainData: If emptyTrainData is false the method create deep copy of the object, i.e. copies both parameters and train data. If emptyTrainData is true the method create object copy with current parameters but with empty train data.. .. index:: DescriptorMatcher::create DescriptorMatcher::create ----------------------------- :func:`DescriptorMatcher` .. c:function:: Ptr DescriptorMatcher::create( const string\& descriptorMatcherType ) Descriptor matcher factory that creates of given type with default parameters (rather using default constructor). :param descriptorMatcherType: Descriptor matcher type. Now the following matcher types are supported: ``"BruteForce"`` (it uses ``L2`` ), ``"BruteForce-L1"``,``"BruteForce-Hamming"``,``"BruteForce-HammingLUT"``,``"FlannBased"`` . .. index:: BruteForceMatcher .. _BruteForceMatcher: BruteForceMatcher ----------------- .. c:type:: BruteForceMatcher Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches between descriptor sets. :: template class BruteForceMatcher : public DescriptorMatcher { public: BruteForceMatcher( Distance d = Distance() ); virtual ~BruteForceMatcher(); virtual bool isMaskSupported() const; virtual Ptr clone( bool emptyTrainData=false ) const; protected: ... } .. For efficiency, BruteForceMatcher is templated on the distance metric. For float descriptors, a common choice would be ``L2`` . Class of supported distances are: :: template struct Accumulator { typedef T Type; }; template<> struct Accumulator { typedef unsigned int Type; }; template<> struct Accumulator { typedef unsigned int Type; }; template<> struct Accumulator { typedef int Type; }; template<> struct Accumulator { typedef int Type; }; /* * Squared Euclidean distance functor */ template struct L2 { typedef T ValueType; typedef typename Accumulator::Type ResultType; ResultType operator()( const T* a, const T* b, int size ) const; }; /* * Manhattan distance (city block distance) functor */ template struct CV_EXPORTS L1 { typedef T ValueType; typedef typename Accumulator::Type ResultType; ResultType operator()( const T* a, const T* b, int size ) const; ... }; /* * Hamming distance (city block distance) functor */ struct HammingLUT { typedef unsigned char ValueType; typedef int ResultType; ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const; ... }; struct Hamming { typedef unsigned char ValueType; typedef int ResultType; ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const; ... }; .. .. index:: FlannBasedMatcher .. _FlannBasedMatcher: FlannBasedMatcher ----------------- .. c:type:: FlannBasedMatcher Flann based descriptor matcher. This matcher trains :func:`flann::Index` on train descriptor collection and calls it's nearest search methods to find best matches. So this matcher may be faster in cases of matching to large train collection than brute force matcher. ``FlannBasedMatcher`` does not support masking permissible matches between descriptor sets, because :func:`flann::Index` does not support this. :: class FlannBasedMatcher : public DescriptorMatcher { public: FlannBasedMatcher( const Ptr& indexParams=new flann::KDTreeIndexParams(), const Ptr& searchParams=new flann::SearchParams() ); virtual void add( const vector& descriptors ); virtual void clear(); virtual void train(); virtual bool isMaskSupported() const; virtual Ptr clone( bool emptyTrainData=false ) const; protected: ... }; ..