/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; using namespace testing; ////////////////////////////////////////////////////////////////////////// // BlockMatching struct StereoBlockMatching : TestWithParam { cv::Mat img_l; cv::Mat img_r; cv::Mat img_template; cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); img_l = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE); img_r = readImage("stereobm/aloe-R.png", CV_LOAD_IMAGE_GRAYSCALE); img_template = readImage("stereobm/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(img_l.empty()); ASSERT_FALSE(img_r.empty()); ASSERT_FALSE(img_template.empty()); } }; TEST_P(StereoBlockMatching, Regression) { cv::Mat disp; cv::gpu::GpuMat dev_disp; cv::gpu::StereoBM_GPU bm(0, 128, 19); bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp); dev_disp.download(disp); disp.convertTo(disp, img_template.type()); EXPECT_MAT_NEAR(img_template, disp, 0.0); } INSTANTIATE_TEST_CASE_P(Calib3D, StereoBlockMatching, ALL_DEVICES); ////////////////////////////////////////////////////////////////////////// // BeliefPropagation struct StereoBeliefPropagation : TestWithParam { cv::Mat img_l; cv::Mat img_r; cv::Mat img_template; cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); img_l = readImage("stereobp/aloe-L.png"); img_r = readImage("stereobp/aloe-R.png"); img_template = readImage("stereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(img_l.empty()); ASSERT_FALSE(img_r.empty()); ASSERT_FALSE(img_template.empty()); } }; TEST_P(StereoBeliefPropagation, Regression) { cv::Mat disp; cv::gpu::GpuMat dev_disp; cv::gpu::StereoBeliefPropagation bpm(64, 8, 2, 25, 0.1f, 15, 1, CV_16S); bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp); dev_disp.download(disp); disp.convertTo(disp, img_template.type()); EXPECT_MAT_NEAR(img_template, disp, 0.0); } INSTANTIATE_TEST_CASE_P(Calib3D, StereoBeliefPropagation, ALL_DEVICES); ////////////////////////////////////////////////////////////////////////// // ConstantSpaceBP struct StereoConstantSpaceBP : TestWithParam { cv::Mat img_l; cv::Mat img_r; cv::Mat img_template; cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); img_l = readImage("csstereobp/aloe-L.png"); img_r = readImage("csstereobp/aloe-R.png"); if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) img_template = readImage("csstereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE); else img_template = readImage("csstereobp/aloe-disp_CC1X.png", CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(img_l.empty()); ASSERT_FALSE(img_r.empty()); ASSERT_FALSE(img_template.empty()); } }; TEST_P(StereoConstantSpaceBP, Regression) { cv::Mat disp; cv::gpu::GpuMat dev_disp; cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4); bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp); dev_disp.download(disp); disp.convertTo(disp, img_template.type()); EXPECT_MAT_NEAR(img_template, disp, 1.0); } INSTANTIATE_TEST_CASE_P(Calib3D, StereoConstantSpaceBP, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // projectPoints struct ProjectPoints : TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat src; cv::Mat rvec; cv::Mat tvec; cv::Mat camera_mat; std::vector dst_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false); rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0, 1, false); camera_mat.at(0, 1) = 0.f; camera_mat.at(1, 0) = 0.f; camera_mat.at(2, 0) = 0.f; camera_mat.at(2, 1) = 0.f; cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold); } }; TEST_P(ProjectPoints, Accuracy) { cv::Mat dst; cv::gpu::GpuMat d_dst; cv::gpu::projectPoints(cv::gpu::GpuMat(src), rvec, tvec, camera_mat, cv::Mat(), d_dst); d_dst.download(dst); ASSERT_EQ(dst_gold.size(), dst.cols); ASSERT_EQ(1, dst.rows); ASSERT_EQ(CV_32FC2, dst.type()); for (size_t i = 0; i < dst_gold.size(); ++i) { cv::Point2f res_gold = dst_gold[i]; cv::Point2f res_actual = dst.at(0, i); cv::Point2f err = res_actual - res_gold; ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f); } } INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // transformPoints struct TransformPoints : TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat src; cv::Mat rvec; cv::Mat tvec; cv::Mat rot; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false); rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); cv::Rodrigues(rvec, rot); } }; TEST_P(TransformPoints, Accuracy) { cv::Mat dst; cv::gpu::GpuMat d_dst; cv::gpu::transformPoints(cv::gpu::GpuMat(src), rvec, tvec, d_dst); d_dst.download(dst); ASSERT_EQ(src.size(), dst.size()); ASSERT_EQ(src.type(), dst.type()); for (int i = 0; i < dst.cols; ++i) { cv::Point3f p = src.at(0, i); cv::Point3f res_gold( rot.at(0, 0) * p.x + rot.at(0, 1) * p.y + rot.at(0, 2) * p.z + tvec.at(0, 0), rot.at(1, 0) * p.x + rot.at(1, 1) * p.y + rot.at(1, 2) * p.z + tvec.at(0, 1), rot.at(2, 0) * p.x + rot.at(2, 1) * p.y + rot.at(2, 2) * p.z + tvec.at(0, 2)); cv::Point3f res_actual = dst.at(0, i); cv::Point3f err = res_actual - res_gold; ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f); } } INSTANTIATE_TEST_CASE_P(Calib3D, TransformPoints, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // solvePnPRansac struct SolvePnPRansac : TestWithParam { static const int num_points = 5000; cv::gpu::DeviceInfo devInfo; cv::Mat object; cv::Mat camera_mat; std::vector image_vec; cv::Mat rvec_gold; cv::Mat tvec_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); object = cvtest::randomMat(rng, cv::Size(num_points, 1), CV_32FC3, 0, 100, false); camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0.5, 1, false); camera_mat.at(0, 1) = 0.f; camera_mat.at(1, 0) = 0.f; camera_mat.at(2, 0) = 0.f; camera_mat.at(2, 1) = 0.f; rvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); tvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false); cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec); } }; TEST_P(SolvePnPRansac, Accuracy) { cv::Mat rvec, tvec; std::vector inliers; cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers); ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3f); ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3f); } INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, ALL_DEVICES); #endif // HAVE_CUDA