/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA ///////////////////////////////////////////////////////////////////////////////////////////////// // SURF struct SURF : testing::TestWithParam { static cv::Mat image; static cv::Mat mask; static std::vector keypoints_gold; static std::vector descriptors_gold; static void SetUpTestCase() { image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE); mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1)); mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); cv::SURF fdetector_gold; fdetector_gold.extended = false; fdetector_gold(image, mask, keypoints_gold, descriptors_gold); } static void TearDownTestCase() { image.release(); mask.release(); keypoints_gold.clear(); descriptors_gold.clear(); } cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } bool isSimilarKeypoints(const cv::KeyPoint& p1, const cv::KeyPoint& p2) { const float maxPtDif = 1.f; const float maxSizeDif = 1.f; const float maxAngleDif = 2.f; const float maxResponseDif = 0.1f; float dist = (float)cv::norm(p1.pt - p2.pt); return (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && p1.octave == p2.octave && p1.class_id == p2.class_id ); } }; cv::Mat SURF::image; cv::Mat SURF::mask; std::vector SURF::keypoints_gold; std::vector SURF::descriptors_gold; TEST_P(SURF, EmptyDataTest) { PRINT_PARAM(devInfo); cv::gpu::SURF_GPU fdetector; cv::gpu::GpuMat image; std::vector keypoints; std::vector descriptors; ASSERT_NO_THROW( fdetector(image, cv::gpu::GpuMat(), keypoints, descriptors); ); EXPECT_TRUE(keypoints.empty()); EXPECT_TRUE(descriptors.empty()); } TEST_P(SURF, Accuracy) { ASSERT_TRUE(!image.empty()); PRINT_PARAM(devInfo); // Compute keypoints. std::vector keypoints; cv::Mat descriptors; ASSERT_NO_THROW( cv::gpu::GpuMat dev_descriptors; cv::gpu::SURF_GPU fdetector; fdetector.extended = false; fdetector(cv::gpu::GpuMat(image), cv::gpu::GpuMat(mask), keypoints, dev_descriptors); dev_descriptors.download(descriptors); ); cv::BruteForceMatcher< cv::L2 > matcher; std::vector matches; matcher.match(cv::Mat(keypoints_gold.size(), 64, CV_32FC1, &descriptors_gold[0]), descriptors, matches); int validCount = 0; for (size_t i = 0; i < matches.size(); ++i) { const cv::DMatch& m = matches[i]; const cv::KeyPoint& p1 = keypoints_gold[m.queryIdx]; const cv::KeyPoint& p2 = keypoints[m.trainIdx]; const float maxPtDif = 1.f; const float maxSizeDif = 1.f; const float maxAngleDif = 2.f; const float maxResponseDif = 0.1f; float dist = (float)cv::norm(p1.pt - p2.pt); if (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && p1.octave == p2.octave && p1.class_id == p2.class_id ) { ++validCount; } } double validRatio = (double)validCount / matches.size(); EXPECT_GT(validRatio, 0.5); } INSTANTIATE_TEST_CASE_P(Features2D, SURF, testing::ValuesIn(devices(cv::gpu::GLOBAL_ATOMICS))); ///////////////////////////////////////////////////////////////////////////////////////////////// // BruteForceMatcher static const char* dists[] = {"L1Dist", "L2Dist", "HammingDist"}; struct BruteForceMatcher : testing::TestWithParam< std::tr1::tuple > { static const int queryDescCount = 300; // must be even number because we split train data in some cases in two static const int countFactor = 4; // do not change it cv::gpu::DeviceInfo devInfo; cv::gpu::BruteForceMatcher_GPU_base::DistType distType; int dim; cv::Mat query, train; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); distType = std::tr1::get<1>(GetParam()); dim = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat queryBuf, trainBuf; // Generate query descriptors randomly. // Descriptor vector elements are integer values. queryBuf.create(queryDescCount, dim, CV_32SC1); rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3)); queryBuf.convertTo(queryBuf, CV_32FC1); // Generate train decriptors as follows: // copy each query descriptor to train set countFactor times // and perturb some one element of the copied descriptors in // in ascending order. General boundaries of the perturbation // are (0.f, 1.f). trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1); float step = 1.f / countFactor; for (int qIdx = 0; qIdx < queryDescCount; qIdx++) { cv::Mat queryDescriptor = queryBuf.row(qIdx); for (int c = 0; c < countFactor; c++) { int tIdx = qIdx * countFactor + c; cv::Mat trainDescriptor = trainBuf.row(tIdx); queryDescriptor.copyTo(trainDescriptor); int elem = rng(dim); float diff = rng.uniform(step * c, step * (c + 1)); trainDescriptor.at(0, elem) += diff; } } queryBuf.convertTo(query, CV_32F); trainBuf.convertTo(train, CV_32F); } }; const int BruteForceMatcher::queryDescCount; const int BruteForceMatcher::countFactor; TEST_P(BruteForceMatcher, Match) { const char* distStr = dists[distType]; PRINT_PARAM(devInfo); PRINT_PARAM(distStr); PRINT_PARAM(dim); std::vector matches; ASSERT_NO_THROW( cv::gpu::BruteForceMatcher_GPU_base matcher(distType); matcher.match(cv::gpu::GpuMat(query), cv::gpu::GpuMat(train), matches); ); ASSERT_EQ(queryDescCount, matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { cv::DMatch match = matches[i]; if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) badCount++; } ASSERT_EQ(0, badCount); } TEST_P(BruteForceMatcher, MatchAdd) { const char* distStr = dists[distType]; PRINT_PARAM(devInfo); PRINT_PARAM(distStr); PRINT_PARAM(dim); std::vector matches; bool isMaskSupported; ASSERT_NO_THROW( cv::gpu::BruteForceMatcher_GPU_base matcher(distType); cv::gpu::GpuMat d_train(train); // make add() twice to test such case matcher.add(std::vector(1, d_train.rowRange(0, train.rows/2))); matcher.add(std::vector(1, d_train.rowRange(train.rows/2, train.rows))); // prepare masks (make first nearest match illegal) std::vector masks(2); for (int mi = 0; mi < 2; mi++) { masks[mi] = cv::gpu::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1)); for (int di = 0; di < queryDescCount/2; di++) masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); } matcher.match(cv::gpu::GpuMat(query), matches, masks); isMaskSupported = matcher.isMaskSupported(); ); ASSERT_EQ(queryDescCount, matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { cv::DMatch match = matches[i]; int shift = isMaskSupported ? 1 : 0; { if (i < queryDescCount / 2) { if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0)) badCount++; } else { if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1)) badCount++; } } } ASSERT_EQ(0, badCount); } TEST_P(BruteForceMatcher, KnnMatch) { const char* distStr = dists[distType]; PRINT_PARAM(devInfo); PRINT_PARAM(distStr); PRINT_PARAM(dim); const int knn = 3; std::vector< std::vector > matches; ASSERT_NO_THROW( cv::gpu::BruteForceMatcher_GPU_base matcher(distType); matcher.knnMatch(cv::gpu::GpuMat(query), cv::gpu::GpuMat(train), matches, knn); ); ASSERT_EQ(queryDescCount, matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { if ((int)matches[i].size() != knn) badCount++; else { int localBadCount = 0; for (int k = 0; k < knn; k++) { cv::DMatch match = matches[i][k]; if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) localBadCount++; } badCount += localBadCount > 0 ? 1 : 0; } } ASSERT_EQ(0, badCount); } TEST_P(BruteForceMatcher, KnnMatchAdd) { const char* distStr = dists[distType]; PRINT_PARAM(devInfo); PRINT_PARAM(distStr); PRINT_PARAM(dim); const int knn = 2; std::vector< std::vector > matches; bool isMaskSupported; ASSERT_NO_THROW( cv::gpu::BruteForceMatcher_GPU_base matcher(distType); cv::gpu::GpuMat d_train(train); // make add() twice to test such case matcher.add(std::vector(1, d_train.rowRange(0, train.rows / 2))); matcher.add(std::vector(1, d_train.rowRange(train.rows / 2, train.rows))); // prepare masks (make first nearest match illegal) std::vector masks(2); for (int mi = 0; mi < 2; mi++ ) { masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); for (int di = 0; di < queryDescCount / 2; di++) masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); } matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks); isMaskSupported = matcher.isMaskSupported(); ); ASSERT_EQ(queryDescCount, matches.size()); int badCount = 0; int shift = isMaskSupported ? 1 : 0; for (size_t i = 0; i < matches.size(); i++) { if ((int)matches[i].size() != knn) badCount++; else { int localBadCount = 0; for (int k = 0; k < knn; k++) { cv::DMatch match = matches[i][k]; { if (i < queryDescCount / 2) { if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) localBadCount++; } else { if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } ASSERT_EQ(0, badCount); } TEST_P(BruteForceMatcher, RadiusMatch) { if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) return; const char* distStr = dists[distType]; PRINT_PARAM(devInfo); PRINT_PARAM(distStr); PRINT_PARAM(dim); const float radius = 1.f / countFactor; std::vector< std::vector > matches; ASSERT_NO_THROW( cv::gpu::BruteForceMatcher_GPU_base matcher(distType); matcher.radiusMatch(cv::gpu::GpuMat(query), cv::gpu::GpuMat(train), matches, radius); ); ASSERT_EQ(queryDescCount, matches.size()); int badCount = 0; for (size_t i = 0; i < matches.size(); i++) { if ((int)matches[i].size() != 1) badCount++; else { cv::DMatch match = matches[i][0]; if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0)) badCount++; } } ASSERT_EQ(0, badCount); } TEST_P(BruteForceMatcher, RadiusMatchAdd) { if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) return; const char* distStr = dists[distType]; PRINT_PARAM(devInfo); PRINT_PARAM(distStr); PRINT_PARAM(dim); int n = 3; const float radius = 1.f / countFactor * n; std::vector< std::vector > matches; bool isMaskSupported; ASSERT_NO_THROW( cv::gpu::BruteForceMatcher_GPU_base matcher(distType); cv::gpu::GpuMat d_train(train); // make add() twice to test such case matcher.add(std::vector(1, d_train.rowRange(0, train.rows / 2))); matcher.add(std::vector(1, d_train.rowRange(train.rows / 2, train.rows))); // prepare masks (make first nearest match illegal) std::vector masks(2); for (int mi = 0; mi < 2; mi++) { masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); for (int di = 0; di < queryDescCount / 2; di++) masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); } matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius, masks); isMaskSupported = matcher.isMaskSupported(); ); ASSERT_EQ(queryDescCount, matches.size()); int badCount = 0; int shift = isMaskSupported ? 1 : 0; int needMatchCount = isMaskSupported ? n-1 : n; for (size_t i = 0; i < matches.size(); i++) { if ((int)matches[i].size() != needMatchCount) badCount++; else { int localBadCount = 0; for (int k = 0; k < needMatchCount; k++) { cv::DMatch match = matches[i][k]; { if (i < queryDescCount / 2) { if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) localBadCount++; } else { if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) localBadCount++; } } } badCount += localBadCount > 0 ? 1 : 0; } } ASSERT_EQ(0, badCount); } INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher, testing::Combine( testing::ValuesIn(devices()), testing::Values(cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist), testing::Values(57, 64, 83, 128, 179, 256, 304))); #endif // HAVE_CUDA //struct CV_GpuBFMTest : CV_GpuTestBase //{ // void run_gpu_test(); // // void generateData(GpuMat& query, GpuMat& train, int dim, int depth); // // virtual void test(const GpuMat& query, const GpuMat& train, BruteForceMatcher_GPU_base& matcher) = 0; // // static const int queryDescCount = 300; // must be even number because we split train data in some cases in two // static const int countFactor = 4; // do not change it //}; // //void CV_GpuBFMTest::run_gpu_test() //{ // BruteForceMatcher_GPU_base::DistType dists[] = {BruteForceMatcher_GPU_base::L1Dist, BruteForceMatcher_GPU_base::L2Dist, BruteForceMatcher_GPU_base::HammingDist}; // const char* dists_str[] = {"L1Dist", "L2Dist", "HammingDist"}; // int dists_count = sizeof(dists) / sizeof(dists[0]); // // RNG rng = ts->get_rng(); // // int dims[] = {rng.uniform(30, 60), 64, rng.uniform(70, 110), 128, rng.uniform(130, 250), 256, rng.uniform(260, 350)}; // int dims_count = sizeof(dims) / sizeof(dims[0]); // // for (int dist = 0; dist < dists_count; ++dist) // { // int depth_end = dists[dist] == BruteForceMatcher_GPU_base::HammingDist ? CV_32S : CV_32F; // // for (int depth = CV_8U; depth <= depth_end; ++depth) // { // for (int dim = 0; dim < dims_count; ++dim) // { // PRINT_ARGS("dist=%s depth=%s dim=%d", dists_str[dist], getTypeName(depth), dims[dim]); // // BruteForceMatcher_GPU_base matcher(dists[dist]); // // GpuMat query, train; // generateData(query, train, dim, depth); // // test(query, train, matcher); // } // } // } //} // //void CV_GpuBFMTest::generateData(GpuMat& queryGPU, GpuMat& trainGPU, int dim, int depth) //{ // RNG& rng = ts->get_rng(); // // Mat queryBuf, trainBuf; // // // Generate query descriptors randomly. // // Descriptor vector elements are integer values. // queryBuf.create(queryDescCount, dim, CV_32SC1); // rng.fill(queryBuf, RNG::UNIFORM, Scalar::all(0), Scalar(3)); // queryBuf.convertTo(queryBuf, CV_32FC1); // // // Generate train decriptors as follows: // // copy each query descriptor to train set countFactor times // // and perturb some one element of the copied descriptors in // // in ascending order. General boundaries of the perturbation // // are (0.f, 1.f). // trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1); // float step = 1.f / countFactor; // for (int qIdx = 0; qIdx < queryDescCount; qIdx++) // { // Mat queryDescriptor = queryBuf.row(qIdx); // for (int c = 0; c < countFactor; c++) // { // int tIdx = qIdx * countFactor + c; // Mat trainDescriptor = trainBuf.row(tIdx); // queryDescriptor.copyTo(trainDescriptor); // int elem = rng(dim); // float diff = rng.uniform(step * c, step * (c + 1)); // trainDescriptor.at(0, elem) += diff; // } // } // // Mat query, train; // queryBuf.convertTo(query, depth); // trainBuf.convertTo(train, depth); // // queryGPU.upload(query); // trainGPU.upload(train); //} // //#define GPU_BFM_TEST(test_name) \ // struct CV_GpuBFM_ ##test_name ## _Test : CV_GpuBFMTest \ // { \ // void test(const GpuMat& query, const GpuMat& train, BruteForceMatcher_GPU_base& matcher); \ // }; \ // TEST(BruteForceMatcher, test_name) { CV_GpuBFM_ ##test_name ## _Test test; test.safe_run(); } \ // void CV_GpuBFM_ ##test_name ## _Test::test(const GpuMat& query, const GpuMat& train, BruteForceMatcher_GPU_base& matcher) // ///////////////////////////////////////////////////////////////////////////////////////////////////////// //// match // //GPU_BFM_TEST(match) //{ // vector matches; // // matcher.match(query, train, matches); // // CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); // // int badCount = 0; // for (size_t i = 0; i < matches.size(); i++) // { // DMatch match = matches[i]; // if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) // badCount++; // } // // CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //} // //GPU_BFM_TEST(match_add) //{ // vector matches; // // // make add() twice to test such case // matcher.add(vector(1, train.rowRange(0, train.rows/2))); // matcher.add(vector(1, train.rowRange(train.rows/2, train.rows))); // // // prepare masks (make first nearest match illegal) // vector masks(2); // for (int mi = 0; mi < 2; mi++) // { // masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); // for (int di = 0; di < queryDescCount/2; di++) // masks[mi].col(di * countFactor).setTo(Scalar::all(0)); // } // // matcher.match(query, matches, masks); // // CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); // // int badCount = 0; // for (size_t i = 0; i < matches.size(); i++) // { // DMatch match = matches[i]; // int shift = matcher.isMaskSupported() ? 1 : 0; // { // if (i < queryDescCount / 2) // { // if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0)) // badCount++; // } // else // { // if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1)) // badCount++; // } // } // } // // CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //} // ///////////////////////////////////////////////////////////////////////////////////////////////////////// //// knnMatch // //GPU_BFM_TEST(knnMatch) //{ // const int knn = 3; // // vector< vector > matches; // // matcher.knnMatch(query, train, matches, knn); // // CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); // // int badCount = 0; // for (size_t i = 0; i < matches.size(); i++) // { // if ((int)matches[i].size() != knn) // badCount++; // else // { // int localBadCount = 0; // for (int k = 0; k < knn; k++) // { // DMatch match = matches[i][k]; // if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) // localBadCount++; // } // badCount += localBadCount > 0 ? 1 : 0; // } // } // // CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //} // //GPU_BFM_TEST(knnMatch_add) //{ // const int knn = 2; // vector > matches; // // // make add() twice to test such case // matcher.add(vector(1,train.rowRange(0, train.rows / 2))); // matcher.add(vector(1,train.rowRange(train.rows / 2, train.rows))); // // // prepare masks (make first nearest match illegal) // vector masks(2); // for (int mi = 0; mi < 2; mi++ ) // { // masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1)); // for (int di = 0; di < queryDescCount / 2; di++) // masks[mi].col(di * countFactor).setTo(Scalar::all(0)); // } // // matcher.knnMatch(query, matches, knn, masks); // // CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); // // int badCount = 0; // int shift = matcher.isMaskSupported() ? 1 : 0; // for (size_t i = 0; i < matches.size(); i++) // { // if ((int)matches[i].size() != knn) // badCount++; // else // { // int localBadCount = 0; // for (int k = 0; k < knn; k++) // { // DMatch match = matches[i][k]; // { // if (i < queryDescCount / 2) // { // if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) // localBadCount++; // } // else // { // if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) // localBadCount++; // } // } // } // badCount += localBadCount > 0 ? 1 : 0; // } // } // // CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //} // ///////////////////////////////////////////////////////////////////////////////////////////////////////// //// radiusMatch // //GPU_BFM_TEST(radiusMatch) //{ // CHECK_RETURN(support(GLOBAL_ATOMICS), TS::SKIPPED); // // const float radius = 1.f / countFactor; // // vector< vector > matches; // // matcher.radiusMatch(query, train, matches, radius); // // CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); // // int badCount = 0; // for (size_t i = 0; i < matches.size(); i++) // { // if ((int)matches[i].size() != 1) // badCount++; // else // { // DMatch match = matches[i][0]; // if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0)) // badCount++; // } // } // // CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //} // //GPU_BFM_TEST(radiusMatch_add) //{ // CHECK_RETURN(support(GLOBAL_ATOMICS), TS::SKIPPED); // // int n = 3; // const float radius = 1.f / countFactor * n; // vector< vector > matches; // // // make add() twice to test such case // matcher.add(vector(1,train.rowRange(0, train.rows / 2))); // matcher.add(vector(1,train.rowRange(train.rows / 2, train.rows))); // // // prepare masks (make first nearest match illegal) // vector masks(2); // for (int mi = 0; mi < 2; mi++) // { // masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1)); // for (int di = 0; di < queryDescCount / 2; di++) // masks[mi].col(di * countFactor).setTo(Scalar::all(0)); // } // // matcher.radiusMatch(query, matches, radius, masks); // // CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); // // int badCount = 0; // int shift = matcher.isMaskSupported() ? 1 : 0; // int needMatchCount = matcher.isMaskSupported() ? n-1 : n; // for (size_t i = 0; i < matches.size(); i++) // { // if ((int)matches[i].size() != needMatchCount) // badCount++; // else // { // int localBadCount = 0; // for (int k = 0; k < needMatchCount; k++) // { // DMatch match = matches[i][k]; // { // if (i < queryDescCount / 2) // { // if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) // localBadCount++; // } // else // { // if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) // localBadCount++; // } // } // } // badCount += localBadCount > 0 ? 1 : 0; // } // } // // CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //} // // // // // // // // // // // // // // // // // // // // // ////struct CV_GpuBruteForceMatcherTest : CV_GpuTestBase ////{ //// void run_gpu_test(); //// //// void emptyDataTest(); //// void dataTest(int dim); //// //// void generateData(GpuMat& query, GpuMat& train, int dim); //// //// void matchTest(const GpuMat& query, const GpuMat& train); //// void knnMatchTest(const GpuMat& query, const GpuMat& train); //// void radiusMatchTest(const GpuMat& query, const GpuMat& train); //// //// BruteForceMatcher_GPU< L2 > dmatcher; //// //// static const int queryDescCount = 300; // must be even number because we split train data in some cases in two //// static const int countFactor = 4; // do not change it ////}; //// ////void CV_GpuBruteForceMatcherTest::emptyDataTest() ////{ //// GpuMat queryDescriptors, trainDescriptors, mask; //// vector trainDescriptorCollection, masks; //// vector matches; //// vector< vector > vmatches; //// //// try //// { //// dmatcher.match(queryDescriptors, trainDescriptors, matches, mask); //// } //// catch(...) //// { //// PRINTLN("match() on empty descriptors must not generate exception (1)"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// //// try //// { //// dmatcher.knnMatch(queryDescriptors, trainDescriptors, vmatches, 2, mask); //// } //// catch(...) //// { //// PRINTLN("knnMatch() on empty descriptors must not generate exception (1)"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// //// try //// { //// dmatcher.radiusMatch(queryDescriptors, trainDescriptors, vmatches, 10.f, mask); //// } //// catch(...) //// { //// PRINTLN("radiusMatch() on empty descriptors must not generate exception (1)"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// //// try //// { //// dmatcher.add(trainDescriptorCollection); //// } //// catch(...) //// { //// PRINTLN("add() on empty descriptors must not generate exception"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// //// try //// { //// dmatcher.match(queryDescriptors, matches, masks); //// } //// catch(...) //// { //// PRINTLN("match() on empty descriptors must not generate exception (2)"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// //// try //// { //// dmatcher.knnMatch(queryDescriptors, vmatches, 2, masks); //// } //// catch(...) //// { //// PRINTLN("knnMatch() on empty descriptors must not generate exception (2)"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// //// try //// { //// dmatcher.radiusMatch( queryDescriptors, vmatches, 10.f, masks ); //// } //// catch(...) //// { //// PRINTLN("radiusMatch() on empty descriptors must not generate exception (2)"); //// ts->set_failed_test_info(TS::FAIL_EXCEPTION); //// } //// ////} //// ////void CV_GpuBruteForceMatcherTest::generateData(GpuMat& queryGPU, GpuMat& trainGPU, int dim) ////{ //// Mat query, train; //// RNG& rng = ts->get_rng(); //// //// // Generate query descriptors randomly. //// // Descriptor vector elements are integer values. //// Mat buf(queryDescCount, dim, CV_32SC1); //// rng.fill(buf, RNG::UNIFORM, Scalar::all(0), Scalar(3)); //// buf.convertTo(query, CV_32FC1); //// //// // Generate train decriptors as follows: //// // copy each query descriptor to train set countFactor times //// // and perturb some one element of the copied descriptors in //// // in ascending order. General boundaries of the perturbation //// // are (0.f, 1.f). //// train.create( query.rows*countFactor, query.cols, CV_32FC1 ); //// float step = 1.f / countFactor; //// for (int qIdx = 0; qIdx < query.rows; qIdx++) //// { //// Mat queryDescriptor = query.row(qIdx); //// for (int c = 0; c < countFactor; c++) //// { //// int tIdx = qIdx * countFactor + c; //// Mat trainDescriptor = train.row(tIdx); //// queryDescriptor.copyTo(trainDescriptor); //// int elem = rng(dim); //// float diff = rng.uniform(step * c, step * (c + 1)); //// trainDescriptor.at(0, elem) += diff; //// } //// } //// //// queryGPU.upload(query); //// trainGPU.upload(train); ////} //// ////void CV_GpuBruteForceMatcherTest::matchTest(const GpuMat& query, const GpuMat& train) ////{ //// dmatcher.clear(); //// //// // test const version of match() //// { //// vector matches; //// dmatcher.match(query, train, matches); //// //// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); //// //// int badCount = 0; //// for (size_t i = 0; i < matches.size(); i++) //// { //// DMatch match = matches[i]; //// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) //// badCount++; //// } //// //// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //// } //// //// // test version of match() with add() //// { //// vector matches; //// //// // make add() twice to test such case //// dmatcher.add(vector(1, train.rowRange(0, train.rows/2))); //// dmatcher.add(vector(1, train.rowRange(train.rows/2, train.rows))); //// //// // prepare masks (make first nearest match illegal) //// vector masks(2); //// for (int mi = 0; mi < 2; mi++) //// { //// masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1)); //// for (int di = 0; di < queryDescCount/2; di++) //// masks[mi].col(di * countFactor).setTo(Scalar::all(0)); //// } //// //// dmatcher.match(query, matches, masks); //// //// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); //// //// int badCount = 0; //// for (size_t i = 0; i < matches.size(); i++) //// { //// DMatch match = matches[i]; //// int shift = dmatcher.isMaskSupported() ? 1 : 0; //// { //// if (i < queryDescCount / 2) //// { //// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0)) //// badCount++; //// } //// else //// { //// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1)) //// badCount++; //// } //// } //// } //// //// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //// } ////} //// ////void CV_GpuBruteForceMatcherTest::knnMatchTest(const GpuMat& query, const GpuMat& train) ////{ //// dmatcher.clear(); //// //// // test const version of knnMatch() //// { //// const int knn = 3; //// //// vector< vector > matches; //// dmatcher.knnMatch(query, train, matches, knn); //// //// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); //// //// int badCount = 0; //// for (size_t i = 0; i < matches.size(); i++) //// { //// if ((int)matches[i].size() != knn) //// badCount++; //// else //// { //// int localBadCount = 0; //// for (int k = 0; k < knn; k++) //// { //// DMatch match = matches[i][k]; //// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) //// localBadCount++; //// } //// badCount += localBadCount > 0 ? 1 : 0; //// } //// } //// //// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //// } //// //// // test version of knnMatch() with add() //// { //// const int knn = 2; //// vector > matches; //// //// // make add() twice to test such case //// dmatcher.add(vector(1,train.rowRange(0, train.rows / 2))); //// dmatcher.add(vector(1,train.rowRange(train.rows / 2, train.rows))); //// //// // prepare masks (make first nearest match illegal) //// vector masks(2); //// for (int mi = 0; mi < 2; mi++ ) //// { //// masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1)); //// for (int di = 0; di < queryDescCount / 2; di++) //// masks[mi].col(di * countFactor).setTo(Scalar::all(0)); //// } //// //// dmatcher.knnMatch(query, matches, knn, masks); //// //// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); //// //// int badCount = 0; //// int shift = dmatcher.isMaskSupported() ? 1 : 0; //// for (size_t i = 0; i < matches.size(); i++) //// { //// if ((int)matches[i].size() != knn) //// badCount++; //// else //// { //// int localBadCount = 0; //// for (int k = 0; k < knn; k++) //// { //// DMatch match = matches[i][k]; //// { //// if (i < queryDescCount / 2) //// { //// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) //// localBadCount++; //// } //// else //// { //// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) //// localBadCount++; //// } //// } //// } //// badCount += localBadCount > 0 ? 1 : 0; //// } //// } //// //// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //// } ////} //// ////void CV_GpuBruteForceMatcherTest::radiusMatchTest(const GpuMat& query, const GpuMat& train) ////{ //// CHECK_RETURN(support(GLOBAL_ATOMICS), TS::SKIPPED); //// //// dmatcher.clear(); //// //// // test const version of match() //// { //// const float radius = 1.f / countFactor; //// //// vector< vector > matches; //// dmatcher.radiusMatch(query, train, matches, radius); //// //// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); //// //// int badCount = 0; //// for (size_t i = 0; i < matches.size(); i++) //// { //// if ((int)matches[i].size() != 1) //// badCount++; //// else //// { //// DMatch match = matches[i][0]; //// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0)) //// badCount++; //// } //// } //// //// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //// } //// //// // test version of match() with add() //// { //// int n = 3; //// const float radius = 1.f / countFactor * n; //// vector< vector > matches; //// //// // make add() twice to test such case //// dmatcher.add(vector(1,train.rowRange(0, train.rows / 2))); //// dmatcher.add(vector(1,train.rowRange(train.rows / 2, train.rows))); //// //// // prepare masks (make first nearest match illegal) //// vector masks(2); //// for (int mi = 0; mi < 2; mi++) //// { //// masks[mi] = GpuMat(query.rows, train.rows / 2, CV_8UC1, Scalar::all(1)); //// for (int di = 0; di < queryDescCount / 2; di++) //// masks[mi].col(di * countFactor).setTo(Scalar::all(0)); //// } //// //// dmatcher.radiusMatch(query, matches, radius, masks); //// //// CHECK((int)matches.size() == queryDescCount, TS::FAIL_INVALID_OUTPUT); //// //// int badCount = 0; //// int shift = dmatcher.isMaskSupported() ? 1 : 0; //// int needMatchCount = dmatcher.isMaskSupported() ? n-1 : n; //// for (size_t i = 0; i < matches.size(); i++) //// { //// if ((int)matches[i].size() != needMatchCount) //// badCount++; //// else //// { //// int localBadCount = 0; //// for (int k = 0; k < needMatchCount; k++) //// { //// DMatch match = matches[i][k]; //// { //// if (i < queryDescCount / 2) //// { //// if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) //// localBadCount++; //// } //// else //// { //// if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) //// localBadCount++; //// } //// } //// } //// badCount += localBadCount > 0 ? 1 : 0; //// } //// } //// //// CHECK(badCount == 0, TS::FAIL_INVALID_OUTPUT); //// } ////} //// ////void CV_GpuBruteForceMatcherTest::dataTest(int dim) ////{ //// GpuMat query, train; //// generateData(query, train, dim); //// //// matchTest(query, train); //// knnMatchTest(query, train); //// radiusMatchTest(query, train); //// //// dmatcher.clear(); ////} //// ////void CV_GpuBruteForceMatcherTest::run_gpu_test() ////{ //// emptyDataTest(); //// //// dataTest(50); //// dataTest(64); //// dataTest(100); //// dataTest(128); //// dataTest(200); //// dataTest(256); //// dataTest(300); ////} //// ////TEST(BruteForceMatcher, accuracy) { CV_GpuBruteForceMatcherTest test; test.safe_run(); }