''' Feature homography ================== Example of using features2d framework for interactive video homography matching. ORB features and FLANN matcher are used. Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY Usage ----- feature_homography.py [<video source>] Select a textured planar object to track by drawing a box with a mouse. ''' import numpy as np import cv2 import video import common from operator import attrgetter def get_size(a): h, w = a.shape[:2] return w, h FLANN_INDEX_KDTREE = 1 FLANN_INDEX_LSH = 6 flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 MIN_MATCH_COUNT = 10 class App: def __init__(self, src): self.cap = video.create_capture(src) self.ref_frame = None self.detector = cv2.ORB( nfeatures = 1000 ) self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) cv2.namedWindow('plane') self.rect_sel = common.RectSelector('plane', self.on_rect) self.frame = None def match_frames(self): if len(self.frame_desc) < MIN_MATCH_COUNT or len(self.frame_desc) < MIN_MATCH_COUNT: return raw_matches = self.matcher.knnMatch(self.ref_descs, trainDescriptors = self.frame_desc, k = 2) p0, p1 = [], [] for m in raw_matches: if len(m) == 2 and m[0].distance < m[1].distance * 0.75: m = m[0] p0.append( self.ref_points[m.queryIdx].pt ) p1.append( self.frame_points[m.trainIdx].pt ) p0, p1 = np.float32((p0, p1)) if len(p0) < MIN_MATCH_COUNT: return H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 4.0) status = status.ravel() != 0 if status.sum() < MIN_MATCH_COUNT: return p0, p1 = p0[status], p1[status] return p0, p1, H def on_frame(self, frame): if self.frame is None or not self.rect_sel.dragging: self.frame = frame = np.fliplr(frame).copy() self.frame_points, self.frame_desc = self.detector.detectAndCompute(self.frame, None) if self.frame_desc is None: # detectAndCompute returns descs=None if not keypoints found self.frame_desc = [] else: self.ref_frame = None w, h = get_size(self.frame) vis = np.zeros((h, w*2, 3), np.uint8) vis[:h,:w] = self.frame self.rect_sel.draw(vis) for kp in self.frame_points: x, y = kp.pt cv2.circle(vis, (int(x), int(y)), 2, (0, 255, 255)) if self.ref_frame is not None: vis[:h,w:] = self.ref_frame x0, y0, x1, y1 = self.ref_rect cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2) for kp in self.ref_points: x, y = kp.pt cv2.circle(vis, (int(x+w), int(y)), 2, (0, 255, 255)) match = self.match_frames() if match is not None: p0, p1, H = match for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)): cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0)) x0, y0, x1, y1 = self.ref_rect corners = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H) ) cv2.polylines(vis, [corners], True, (255, 255, 255), 2) cv2.imshow('plane', vis) def on_rect(self, rect): x0, y0, x1, y1 = rect self.ref_frame = self.frame.copy() self.ref_rect = rect points, descs = [], [] for kp, desc in zip(self.frame_points, self.frame_desc): x, y = kp.pt if x0 <= x <= x1 and y0 <= y <= y1: points.append(kp) descs.append(desc) self.ref_points, self.ref_descs = points, np.uint8(descs) def run(self): while True: ret, frame = self.cap.read() self.on_frame(frame) ch = cv2.waitKey(1) if ch == 27: break if __name__ == '__main__': print __doc__ import sys try: video_src = sys.argv[1] except: video_src = '0' App(video_src).run()