import numpy as np import cv2 def load_base(fn): a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') }) samples, responses = a[:,1:], a[:,0] return samples, responses # TODO move these to cv2 CV_ROW_SAMPLE = 1 CV_VAR_NUMERICAL = 0 CV_VAR_ORDERED = 0 CV_VAR_CATEGORICAL = 1 class LetterStatModel(object): train_ratio = 0.5 def load(self, fn): self.model.load(fn) def save(self, fn): self.model.save(fn) class RTrees(LetterStatModel): def __init__(self): self.model = cv2.RTrees() def train(self, samples, responses): sample_n, var_n = samples.shape var_types = np.array([CV_VAR_NUMERICAL] * var_n + [CV_VAR_CATEGORICAL], np.uint8) #CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER)); params = dict(max_depth=10 ) self.model.train(samples, CV_ROW_SAMPLE, responses, varType = var_types, params = params) def predict(self, samples): return np.float32( [self.model.predict(s) for s in samples] ) class KNearest(LetterStatModel): def __init__(self): self.model = cv2.KNearest() def train(self, samples, responses): self.model.train(samples, responses) def predict(self, samples): retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10) return results.ravel() class Boost(LetterStatModel): def __init__(self): self.model = cv2.Boost() self.class_n = 26 def train(self, samples, responses): sample_n, var_n = samples.shape new_samples = self.unroll_samples(samples) new_responses = self.unroll_responses(responses) var_types = np.array([CV_VAR_NUMERICAL] * var_n + [CV_VAR_CATEGORICAL, CV_VAR_CATEGORICAL], np.uint8) #CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 ) params = dict(max_depth=5) #, use_surrogates=False) self.model.train(new_samples, CV_ROW_SAMPLE, new_responses, varType = var_types, params=params) def predict(self, samples): new_samples = self.unroll_samples(samples) pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] ) pred = pred.reshape(-1, self.class_n).argmax(1) return pred def unroll_samples(self, samples): sample_n, var_n = samples.shape new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32) new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0) new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n) return new_samples def unroll_responses(self, responses): sample_n = len(responses) new_responses = np.zeros(sample_n*self.class_n, np.int32) resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n ) new_responses[resp_idx] = 1 return new_responses class SVM(LetterStatModel): train_ratio = 0.1 def __init__(self): self.model = cv2.SVM() def train(self, samples, responses): params = dict( kernel_type = cv2.SVM_LINEAR, svm_type = cv2.SVM_C_SVC, C = 1 ) self.model.train(samples, responses, params = params) def predict(self, samples): return np.float32( [self.model.predict(s) for s in samples] ) if __name__ == '__main__': import argparse models = [RTrees, KNearest, Boost, SVM] # MLP, NBayes models = dict( [(cls.__name__.lower(), cls) for cls in models] ) parser = argparse.ArgumentParser() parser.add_argument('-model', default='rtrees', choices=models.keys()) parser.add_argument('-data', nargs=1, default='letter-recognition.data') parser.add_argument('-load', nargs=1) parser.add_argument('-save', nargs=1) args = parser.parse_args() print 'loading data %s ...' % args.data samples, responses = load_base(args.data) Model = models[args.model] model = Model() train_n = int(len(samples)*model.train_ratio) if args.load is None: print 'training %s ...' % Model.__name__ model.train(samples[:train_n], responses[:train_n]) else: fn = args.load[0] print 'loading model from %s ...' % fn model.load(fn) print 'testing...' train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n]) test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:]) print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100) if args.save is not None: fn = args.save[0] print 'saving model to %s ...' % fn model.save(fn)