#include #include "opencv2/core/core.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include using namespace cv; using namespace std; void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng ) { H.create(3, 3, CV_32FC1); H.at(0,0) = rng.uniform( 0.8f, 1.2f); H.at(0,1) = rng.uniform(-0.1f, 0.1f); H.at(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols; H.at(1,0) = rng.uniform(-0.1f, 0.1f); H.at(1,1) = rng.uniform( 0.8f, 1.2f); H.at(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows; H.at(2,0) = rng.uniform( -1e-4f, 1e-4f); H.at(2,1) = rng.uniform( -1e-4f, 1e-4f); H.at(2,2) = rng.uniform( 0.8f, 1.2f); warpPerspective( src, dst, H, src.size() ); } const string winName = "correspondences"; void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, const vector& keypoints1, const Mat& descriptors1, Ptr& detector, Ptr& descriptorExtractor, Ptr& descriptorMatcher, double ransacReprojThreshold, RNG& rng ) { assert( !img1.empty() ); Mat H12; if( isWarpPerspective ) warpPerspectiveRand(img1, img2, H12, rng ); else assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ ); cout << endl << "< Extracting keypoints from second image..." << endl; vector keypoints2; detector->detect( img2, keypoints2 ); cout << keypoints2.size() << " >" << endl; cout << "< Computing descriptors for keypoints from second image..." << endl; Mat descriptors2; descriptorExtractor->compute( img2, keypoints2, descriptors2 ); cout << " >" << endl; cout << "< Matching descriptors..." << endl; vector matches; descriptorMatcher->clear(); descriptorMatcher->add( descriptors2 ); descriptorMatcher->match( descriptors1, matches ); cout << ">" << endl; if( !isWarpPerspective && ransacReprojThreshold >= 0 ) { cout << "< Computing homography (RANSAC)..." << endl; vector points1; KeyPoint::convert(keypoints1, points1); vector points2; KeyPoint::convert(keypoints2, points2, matches); H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold ); cout << ">" << endl; } Mat drawImg; if( !H12.empty() ) // filter outliers { vector matchesMask( matches.size(), 0 ); vector points1; KeyPoint::convert(keypoints1, points1); vector points2; KeyPoint::convert(keypoints2, points2, matches); Mat points1t; perspectiveTransform(Mat(points1), points1t, H12); vector::const_iterator mit = matches.begin(); for( size_t i1 = 0; i1 < points1.size(); i1++ ) { if( norm(points2[i1] - points1t.at(i1,0)) < 4 ) // inlier matchesMask[i1] = 1; } // draw inliers drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask ); #if 0 // draw outliers for( size_t i1 = 0; i1 < matchesMask.size(); i1++ ) matchesMask[i1] = !matchesMask[i1]; drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 0, 255), CV_RGB(255, 0, 0), matchesMask, DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ) #endif } else drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg ); imshow( winName, drawImg ); } int main(int argc, char** argv) { if( argc != 4 && argc != 6 ) { cout << "Format:" << endl; cout << "case1: second image is obtained from the first (given) image using random generated homography matrix" << endl; cout << argv[0] << " [detectorType] [descriptorType] [image1]" << endl; cout << "case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated" << endl; cout << argv[0] << " [detectorType] [descriptorType] [image1] [image2] [ransacReprojThreshold]" << endl; cout << endl << "Mathes are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)" << endl; return -1; } bool isWarpPerspective = argc == 4; double ransacReprojThreshold = -1; if( !isWarpPerspective ) ransacReprojThreshold = atof(argv[5]); cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl; Ptr detector = createDetector( argv[1] ); Ptr descriptorExtractor = createDescriptorExtractor( argv[2] ); Ptr descriptorMatcher = createDescriptorMatcher( "BruteForce" ); cout << ">" << endl; if( detector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() ) { cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl; return -1; } cout << "< Reading the images..." << endl; Mat img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE), img2; if( !isWarpPerspective ) img2 = imread( argv[4], CV_LOAD_IMAGE_GRAYSCALE); cout << ">" << endl; if( img1.empty() || (!isWarpPerspective && img2.empty()) ) { cout << "Can not read images" << endl; return -1; } cout << endl << "< Extracting keypoints from first image..." << endl; vector keypoints1; detector->detect( img1, keypoints1 ); cout << keypoints1.size() << " >" << endl; cout << "< Computing descriptors for keypoints from first image..." << endl; Mat descriptors1; descriptorExtractor->compute( img1, keypoints1, descriptors1 ); cout << " >" << endl; namedWindow(winName, 1); RNG rng; doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, detector, descriptorExtractor, descriptorMatcher, ransacReprojThreshold, rng ); for(;;) { char c = (char)cvWaitKey(0); if( c == '\x1b' ) // esc { cout << "Exiting ..." << endl; return 0; } else if( isWarpPerspective ) { doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, detector, descriptorExtractor, descriptorMatcher, ransacReprojThreshold, rng ); } } waitKey(0); return 0; }