/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" //#define DUMP ////////////////////////////////////////////////////// // BroxOpticalFlow #define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin" #define BROX_OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/brox_optical_flow_cc20.bin" struct BroxOpticalFlow : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(BroxOpticalFlow, Regression) { cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); ASSERT_FALSE(frame1.empty()); cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); cv::gpu::GpuMat u; cv::gpu::GpuMat v; brox(loadMat(frame0), loadMat(frame1), u, v); #ifndef DUMP std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20; else fname += BROX_OPTICAL_FLOW_DUMP_FILE; std::ifstream f(fname.c_str(), std::ios_base::binary); int rows, cols; f.read((char*)&rows, sizeof(rows)); f.read((char*)&cols, sizeof(cols)); cv::Mat u_gold(rows, cols, CV_32FC1); for (int i = 0; i < u_gold.rows; ++i) f.read(u_gold.ptr(i), u_gold.cols * sizeof(float)); cv::Mat v_gold(rows, cols, CV_32FC1); for (int i = 0; i < v_gold.rows; ++i) f.read(v_gold.ptr(i), v_gold.cols * sizeof(float)); EXPECT_MAT_NEAR(u_gold, u, 0); EXPECT_MAT_NEAR(v_gold, v, 0); #else std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20; else fname += BROX_OPTICAL_FLOW_DUMP_FILE; std::ofstream f(fname.c_str(), std::ios_base::binary); f.write((char*)&u.rows, sizeof(u.rows)); f.write((char*)&u.cols, sizeof(u.cols)); cv::Mat h_u(u); cv::Mat h_v(v); for (int i = 0; i < u.rows; ++i) f.write(h_u.ptr(i), u.cols * sizeof(float)); for (int i = 0; i < v.rows; ++i) f.write(h_v.ptr(i), v.cols * sizeof(float)); #endif } INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES); ////////////////////////////////////////////////////// // GoodFeaturesToTrack IMPLEMENT_PARAM_CLASS(MinDistance, double) PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) { cv::gpu::DeviceInfo devInfo; double minDistance; virtual void SetUp() { devInfo = GET_PARAM(0); minDistance = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(GoodFeaturesToTrack, Accuracy) { cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); int maxCorners = 1000; double qualityLevel = 0.01; cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS)) { try { cv::gpu::GpuMat d_pts; detector(loadMat(image), d_pts); } catch (const cv::Exception& e) { ASSERT_EQ(CV_StsNotImplemented, e.code); } } else { cv::gpu::GpuMat d_pts; detector(loadMat(image), d_pts); std::vector pts(d_pts.cols); cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]); d_pts.download(pts_mat); std::vector pts_gold; cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); ASSERT_EQ(pts_gold.size(), pts.size()); size_t mistmatch = 0; for (size_t i = 0; i < pts.size(); ++i) { cv::Point2i a = pts_gold[i]; cv::Point2i b = pts[i]; bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; if (!eq) ++mistmatch; } double bad_ratio = static_cast(mistmatch) / pts.size(); ASSERT_LE(bad_ratio, 0.01); } } INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine( ALL_DEVICES, testing::Values(MinDistance(0.0), MinDistance(3.0)))); ////////////////////////////////////////////////////// // PyrLKOpticalFlow IMPLEMENT_PARAM_CLASS(UseGray, bool) PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray) { cv::gpu::DeviceInfo devInfo; bool useGray; virtual void SetUp() { devInfo = GET_PARAM(0); useGray = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(PyrLKOpticalFlow, Sparse) { cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame1.empty()); cv::Mat gray_frame; if (useGray) gray_frame = frame0; else cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); std::vector pts; cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); cv::gpu::GpuMat d_pts; cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void*)&pts[0]); d_pts.upload(pts_mat); cv::gpu::PyrLKOpticalFlow pyrLK; cv::gpu::GpuMat d_nextPts; cv::gpu::GpuMat d_status; pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status); std::vector nextPts(d_nextPts.cols); cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]); d_nextPts.download(nextPts_mat); std::vector status(d_status.cols); cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]); d_status.download(status_mat); std::vector nextPts_gold; std::vector status_gold; cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray()); ASSERT_EQ(nextPts_gold.size(), nextPts.size()); ASSERT_EQ(status_gold.size(), status.size()); size_t mistmatch = 0; for (size_t i = 0; i < nextPts.size(); ++i) { cv::Point2i a = nextPts[i]; cv::Point2i b = nextPts_gold[i]; if (status[i] != status_gold[i]) { ++mistmatch; continue; } if (status[i]) { bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1; if (!eq) ++mistmatch; } } double bad_ratio = static_cast(mistmatch) / nextPts.size(); ASSERT_LE(bad_ratio, 0.01); } INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine( ALL_DEVICES, testing::Values(UseGray(true), UseGray(false)))); ////////////////////////////////////////////////////// // FarnebackOpticalFlow IMPLEMENT_PARAM_CLASS(PyrScale, double) IMPLEMENT_PARAM_CLASS(PolyN, int) CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN) IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow) { cv::gpu::DeviceInfo devInfo; double pyrScale; int polyN; int flags; bool useInitFlow; virtual void SetUp() { devInfo = GET_PARAM(0); pyrScale = GET_PARAM(1); polyN = GET_PARAM(2); flags = GET_PARAM(3); useInitFlow = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; TEST_P(FarnebackOpticalFlow, Accuracy) { cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); double polySigma = polyN <= 5 ? 1.1 : 1.5; cv::gpu::FarnebackOpticalFlow calc; calc.pyrScale = pyrScale; calc.polyN = polyN; calc.polySigma = polySigma; calc.flags = flags; cv::gpu::GpuMat d_flowx, d_flowy; calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy); cv::Mat flow; if (useInitFlow) { cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)}; cv::merge(flowxy, 2, flow); } if (useInitFlow) { calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW; calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy); } cv::calcOpticalFlowFarneback( frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize, calc.numIters, calc.polyN, calc.polySigma, calc.flags); std::vector flowxy; cv::split(flow, flowxy); EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1); EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1); } INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine( ALL_DEVICES, testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)), testing::Values(PolyN(5), PolyN(7)), testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)), testing::Values(UseInitFlow(false), UseInitFlow(true)))); struct OpticalFlowNan : public BroxOpticalFlow {}; TEST_P(OpticalFlowNan, Regression) { cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); ASSERT_FALSE(frame0.empty()); cv::Mat r_frame0, r_frame1; cv::resize(frame0, r_frame0, cv::Size(1380,1000)); cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); ASSERT_FALSE(frame1.empty()); cv::resize(frame1, r_frame1, cv::Size(1380,1000)); cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/); cv::gpu::GpuMat u; cv::gpu::GpuMat v; brox(loadMat(r_frame0), loadMat(r_frame1), u, v); cv::Mat h_u, h_v; u.download(h_u); v.download(h_v); EXPECT_TRUE(cv::checkRange(h_u)); EXPECT_TRUE(cv::checkRange(h_v)); }; INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowNan, ALL_DEVICES); ////////////////////////////////////////////////////// // FGDStatModel namespace cv { template<> void Ptr::delete_obj() { cvReleaseBGStatModel(&obj); } } PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels) { cv::gpu::DeviceInfo devInfo; std::string inputFile; int out_cn; virtual void SetUp() { devInfo = GET_PARAM(0); cv::gpu::setDevice(devInfo.deviceID()); inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1); out_cn = GET_PARAM(2); } }; TEST_P(FGDStatModel, Update) { cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); IplImage ipl_frame = frame; cv::Ptr model(cvCreateFGDStatModel(&ipl_frame)); cv::gpu::GpuMat d_frame(frame); cv::gpu::FGDStatModel d_model(out_cn); d_model.create(d_frame); cv::Mat h_background; cv::Mat h_foreground; cv::Mat h_background3; cv::Mat backgroundDiff; cv::Mat foregroundDiff; for (int i = 0; i < 5; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); ipl_frame = frame; int gold_count = cvUpdateBGStatModel(&ipl_frame, model); d_frame.upload(frame); int count = d_model.update(d_frame); ASSERT_EQ(gold_count, count); cv::Mat gold_background(model->background); cv::Mat gold_foreground(model->foreground); if (out_cn == 3) d_model.background.download(h_background3); else { d_model.background.download(h_background); cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR); } d_model.foreground.download(h_foreground); ASSERT_MAT_NEAR(gold_background, h_background3, 1.0); ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0); } } INSTANTIATE_TEST_CASE_P(GPU_Video, FGDStatModel, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi")), testing::Values(Channels(3), Channels(4)))); ////////////////////////////////////////////////////// // MOG IMPLEMENT_PARAM_CLASS(LearningRate, double) PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi) { cv::gpu::DeviceInfo devInfo; std::string inputFile; bool useGray; double learningRate; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); cv::gpu::setDevice(devInfo.deviceID()); inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1); useGray = GET_PARAM(2); learningRate = GET_PARAM(3); useRoi = GET_PARAM(4); } }; TEST_P(MOG, Update) { cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); cv::gpu::MOG_GPU mog; cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi); cv::BackgroundSubtractorMOG mog_gold; cv::Mat foreground_gold; for (int i = 0; i < 10; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (useGray) { cv::Mat temp; cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); cv::swap(temp, frame); } mog(loadMat(frame, useRoi), foreground, (float)learningRate); mog_gold(frame, foreground_gold, learningRate); ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0); } } INSTANTIATE_TEST_CASE_P(GPU_Video, MOG, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi")), testing::Values(UseGray(true), UseGray(false)), testing::Values(LearningRate(0.0), LearningRate(0.01)), WHOLE_SUBMAT)); ////////////////////////////////////////////////////// // MOG2 PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, UseRoi) { cv::gpu::DeviceInfo devInfo; std::string inputFile; bool useGray; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); cv::gpu::setDevice(devInfo.deviceID()); inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1); useGray = GET_PARAM(2); useRoi = GET_PARAM(3); } }; TEST_P(MOG2, Update) { cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); cv::gpu::MOG2_GPU mog2; cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi); cv::BackgroundSubtractorMOG2 mog2_gold; cv::Mat foreground_gold; for (int i = 0; i < 10; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (useGray) { cv::Mat temp; cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); cv::swap(temp, frame); } mog2(loadMat(frame, useRoi), foreground); mog2_gold(frame, foreground_gold); double norm = cv::norm(foreground_gold, cv::Mat(foreground), cv::NORM_L1); norm /= foreground_gold.size().area(); ASSERT_LE(norm, 0.09); } } TEST_P(MOG2, getBackgroundImage) { if (useGray) return; cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cv::gpu::MOG2_GPU mog2; cv::gpu::GpuMat foreground; cv::BackgroundSubtractorMOG2 mog2_gold; cv::Mat foreground_gold; for (int i = 0; i < 10; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); mog2(loadMat(frame, useRoi), foreground); mog2_gold(frame, foreground_gold); } cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi); mog2.getBackgroundImage(background); cv::Mat background_gold; mog2_gold.getBackgroundImage(background_gold); ASSERT_MAT_NEAR(background_gold, background, 0); } INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi")), testing::Values(UseGray(true), UseGray(false)), WHOLE_SUBMAT)); ////////////////////////////////////////////////////// // VIBE PARAM_TEST_CASE(VIBE, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { }; TEST_P(VIBE, Accuracy) { const cv::gpu::DeviceInfo devInfo = GET_PARAM(0); cv::gpu::setDevice(devInfo.deviceID()); const cv::Size size = GET_PARAM(1); const int type = GET_PARAM(2); const bool useRoi = GET_PARAM(3); const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255)); cv::Mat frame = randomMat(size, type, 0.0, 100); cv::gpu::GpuMat d_frame = loadMat(frame, useRoi); cv::gpu::VIBE_GPU vibe; cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi); vibe.initialize(d_frame); for (int i = 0; i < 20; ++i) vibe(d_frame, d_fgmask); frame = randomMat(size, type, 160, 255); d_frame = loadMat(frame, useRoi); vibe(d_frame, d_fgmask); // now fgmask should be entirely foreground ASSERT_MAT_NEAR(fullfg, d_fgmask, 0); } INSTANTIATE_TEST_CASE_P(GPU_Video, VIBE, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4)), WHOLE_SUBMAT)); ////////////////////////////////////////////////////// // GMG PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi) { }; TEST_P(GMG, Accuracy) { const cv::gpu::DeviceInfo devInfo = GET_PARAM(0); cv::gpu::setDevice(devInfo.deviceID()); const cv::Size size = GET_PARAM(1); const int depth = GET_PARAM(2); const int channels = GET_PARAM(3); const bool useRoi = GET_PARAM(4); const int type = CV_MAKE_TYPE(depth, channels); const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0)); const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255)); cv::Mat frame = randomMat(size, type, 0, 100); cv::gpu::GpuMat d_frame = loadMat(frame, useRoi); cv::gpu::GMG_GPU gmg; gmg.numInitializationFrames = 5; gmg.smoothingRadius = 0; gmg.initialize(d_frame.size(), 0, 255); cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi); for (int i = 0; i < gmg.numInitializationFrames; ++i) { gmg(d_frame, d_fgmask); // fgmask should be entirely background during training ASSERT_MAT_NEAR(zeros, d_fgmask, 0); } frame = randomMat(size, type, 160, 255); d_frame = loadMat(frame, useRoi); gmg(d_frame, d_fgmask); // now fgmask should be entirely foreground ASSERT_MAT_NEAR(fullfg, d_fgmask, 0); } INSTANTIATE_TEST_CASE_P(GPU_Video, GMG, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)), testing::Values(Channels(1), Channels(3), Channels(4)), WHOLE_SUBMAT)); ////////////////////////////////////////////////////// // VideoWriter #ifdef WIN32 PARAM_TEST_CASE(VideoWriter, cv::gpu::DeviceInfo, std::string) { cv::gpu::DeviceInfo devInfo; std::string inputFile; std::string outputFile; virtual void SetUp() { devInfo = GET_PARAM(0); inputFile = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile; outputFile = cv::tempfile(".avi"); } }; TEST_P(VideoWriter, Regression) { const double FPS = 25.0; cv::VideoCapture reader(inputFile); ASSERT_TRUE( reader.isOpened() ); cv::gpu::VideoWriter_GPU d_writer; cv::Mat frame; cv::gpu::GpuMat d_frame; for (int i = 0; i < 10; ++i) { reader >> frame; ASSERT_FALSE(frame.empty()); d_frame.upload(frame); if (!d_writer.isOpened()) d_writer.open(outputFile, frame.size(), FPS); d_writer.write(d_frame); } reader.release(); d_writer.close(); reader.open(outputFile); ASSERT_TRUE( reader.isOpened() ); for (int i = 0; i < 5; ++i) { reader >> frame; ASSERT_FALSE( frame.empty() ); } } INSTANTIATE_TEST_CASE_P(GPU_Video, VideoWriter, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); #endif // WIN32 ////////////////////////////////////////////////////// // VideoReader PARAM_TEST_CASE(VideoReader, cv::gpu::DeviceInfo, std::string) { cv::gpu::DeviceInfo devInfo; std::string inputFile; virtual void SetUp() { devInfo = GET_PARAM(0); inputFile = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + inputFile; } }; TEST_P(VideoReader, Regression) { cv::gpu::VideoReader_GPU reader(inputFile); ASSERT_TRUE( reader.isOpened() ); cv::gpu::GpuMat frame; for (int i = 0; i < 10; ++i) { ASSERT_TRUE( reader.read(frame) ); ASSERT_FALSE( frame.empty() ); } reader.close(); ASSERT_FALSE( reader.isOpened() ); } INSTANTIATE_TEST_CASE_P(GPU_Video, VideoReader, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));