/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_GPU_HPP__ #define __OPENCV_GPU_HPP__ #include "opencv2/core/gpumat.hpp" #include "opencv2/gpuarithm.hpp" #include "opencv2/gpufilters.hpp" #include "opencv2/gpuwarping.hpp" #include "opencv2/gpuimgproc.hpp" #include "opencv2/gpufeatures2d.hpp" #include "opencv2/gpuoptflow.hpp" #include "opencv2/gpubgsegm.hpp" #include "opencv2/gpustereo.hpp" namespace cv { namespace gpu { //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// struct CV_EXPORTS HOGConfidence { double scale; std::vector locations; std::vector confidences; std::vector part_scores[4]; }; struct CV_EXPORTS HOGDescriptor { enum { DEFAULT_WIN_SIGMA = -1 }; enum { DEFAULT_NLEVELS = 64 }; enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL }; HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, bool gamma_correction=true, int nlevels=DEFAULT_NLEVELS); size_t getDescriptorSize() const; size_t getBlockHistogramSize() const; void setSVMDetector(const std::vector& detector); static std::vector getDefaultPeopleDetector(); static std::vector getPeopleDetector48x96(); static std::vector getPeopleDetector64x128(); void detect(const GpuMat& img, std::vector& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size()); void detectMultiScale(const GpuMat& img, std::vector& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, int group_threshold=2); void computeConfidence(const GpuMat& img, std::vector& hits, double hit_threshold, Size win_stride, Size padding, std::vector& locations, std::vector& confidences); void computeConfidenceMultiScale(const GpuMat& img, std::vector& found_locations, double hit_threshold, Size win_stride, Size padding, std::vector &conf_out, int group_threshold); void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format=DESCR_FORMAT_COL_BY_COL); Size win_size; Size block_size; Size block_stride; Size cell_size; int nbins; double win_sigma; double threshold_L2hys; bool gamma_correction; int nlevels; protected: void computeBlockHistograms(const GpuMat& img); void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle); double getWinSigma() const; bool checkDetectorSize() const; static int numPartsWithin(int size, int part_size, int stride); static Size numPartsWithin(Size size, Size part_size, Size stride); // Coefficients of the separating plane float free_coef; GpuMat detector; // Results of the last classification step GpuMat labels, labels_buf; Mat labels_host; // Results of the last histogram evaluation step GpuMat block_hists, block_hists_buf; // Gradients conputation results GpuMat grad, qangle, grad_buf, qangle_buf; // returns subbuffer with required size, reallocates buffer if nessesary. static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf); static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf); std::vector image_scales; }; // The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny. class CV_EXPORTS CascadeClassifier_GPU { public: CascadeClassifier_GPU(); CascadeClassifier_GPU(const String& filename); ~CascadeClassifier_GPU(); bool empty() const; bool load(const String& filename); void release(); /* returns number of detected objects */ int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size()); int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4); bool findLargestObject; bool visualizeInPlace; Size getClassifierSize() const; private: struct CascadeClassifierImpl; CascadeClassifierImpl* impl; struct HaarCascade; struct LbpCascade; friend class CascadeClassifier_GPU_LBP; }; //!performs labeling via graph cuts of a 2D regular 4-connected graph. CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf, Stream& stream = Stream::Null()); //!performs labeling via graph cuts of a 2D regular 8-connected graph. CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight, GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight, GpuMat& labels, GpuMat& buf, Stream& stream = Stream::Null()); //! compute mask for Generalized Flood fill componetns labeling. CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null()); //! performs connected componnents labeling. CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null()); CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream = Stream::Null()); CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream = Stream::Null()); CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, std::vector* inliers=NULL); //! removes points (CV_32FC2, single row matrix) with zero mask value CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask); CV_EXPORTS void calcWobbleSuppressionMaps( int left, int idx, int right, Size size, const Mat &ml, const Mat &mr, GpuMat &mapx, GpuMat &mapy); }} // namespace cv { namespace gpu { #endif /* __OPENCV_GPU_HPP__ */