''' SVN and KNearest digit recognition. Sample loads a dataset of handwritten digits from 'digits.png'. Then it trains a SVN and KNearest classifiers on it and evaluates their accuracy. Following preprocessing is applied to the dataset: - Moment-based image deskew (see deskew()) - Digit images are split into 4 10x10 cells and 16-bin histogram of oriented gradients is computed for each cell - Transform histograms to space with Hellinger metric (see [1] (RootSIFT)) [1] R. Arandjelovic, A. Zisserman "Three things everyone should know to improve object retrieval" http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf Usage: digits.py ''' import numpy as np import cv2 from multiprocessing.pool import ThreadPool from common import clock, mosaic from numpy.linalg import norm SZ = 20 # size of each digit is SZ x SZ CLASS_N = 10 DIGITS_FN = 'data/digits.png' def split2d(img, cell_size, flatten=True): h, w = img.shape[:2] sx, sy = cell_size cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)] cells = np.array(cells) if flatten: cells = cells.reshape(-1, sy, sx) return cells def load_digits(fn): print 'loading "%s" ...' % fn digits_img = cv2.imread(fn, 0) digits = split2d(digits_img, (SZ, SZ)) labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N) return digits, labels def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11']/m['mu02'] M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) return img class StatModel(object): def load(self, fn): self.model.load(fn) def save(self, fn): self.model.save(fn) class KNearest(StatModel): def __init__(self, k = 3): self.k = k self.model = cv2.KNearest() def train(self, samples, responses): self.model = cv2.KNearest() self.model.train(samples, responses) def predict(self, samples): retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k) return results.ravel() class SVM(StatModel): def __init__(self, C = 1, gamma = 0.5): self.params = dict( kernel_type = cv2.SVM_RBF, svm_type = cv2.SVM_C_SVC, C = C, gamma = gamma ) self.model = cv2.SVM() def train(self, samples, responses): self.model = cv2.SVM() self.model.train(samples, responses, params = self.params) def predict(self, samples): return self.model.predict_all(samples).ravel() def evaluate_model(model, digits, samples, labels): resp = model.predict(samples) err = (labels != resp).mean() print 'error: %.2f %%' % (err*100) confusion = np.zeros((10, 10), np.int32) for i, j in zip(labels, resp): confusion[i, j] += 1 print 'confusion matrix:' print confusion print vis = [] for img, flag in zip(digits, resp == labels): img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if not flag: img[...,:2] = 0 vis.append(img) return mosaic(25, vis) def preprocess_simple(digits): return np.float32(digits).reshape(-1, SZ*SZ) / 255.0 def preprocess_hog(digits): samples = [] for img in digits: gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) mag, ang = cv2.cartToPolar(gx, gy) bin_n = 16 bin = np.int32(bin_n*ang/(2*np.pi)) bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:] mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] hist = np.hstack(hists) # transform to Hellinger kernel eps = 1e-7 hist /= hist.sum() + eps hist = np.sqrt(hist) hist /= norm(hist) + eps samples.append(hist) return np.float32(samples) if __name__ == '__main__': print __doc__ digits, labels = load_digits(DIGITS_FN) print 'preprocessing...' # shuffle digits rand = np.random.RandomState(321) shuffle = rand.permutation(len(digits)) digits, labels = digits[shuffle], labels[shuffle] digits2 = map(deskew, digits) samples = preprocess_hog(digits2) train_n = int(0.9*len(samples)) cv2.imshow('test set', mosaic(25, digits[train_n:])) digits_train, digits_test = np.split(digits2, [train_n]) samples_train, samples_test = np.split(samples, [train_n]) labels_train, labels_test = np.split(labels, [train_n]) print 'training KNearest...' model = KNearest(k=4) model.train(samples_train, labels_train) vis = evaluate_model(model, digits_test, samples_test, labels_test) cv2.imshow('KNearest test', vis) print 'training SVM...' model = SVM(C=2.67, gamma=5.383) model.train(samples_train, labels_train) vis = evaluate_model(model, digits_test, samples_test, labels_test) cv2.imshow('SVM test', vis) print 'saving SVM as "digits_svm.dat"...' model.save('digits_svm.dat') cv2.waitKey(0)