#ifndef OPENCV2X_PYTHON_WRAPPERS
#define OPENCV2X_PYTHON_WRAPPERS

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/video/background_segm.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv_extra_api.hpp"

#define ERRWRAP2(expr) \
try \
{ \
    expr; \
} \
catch (const cv::Exception &e) \
{ \
    PyErr_SetString(opencv_error, e.what()); \
    return 0; \
}

using namespace cv;

typedef vector<uchar> vector_uchar;
typedef vector<int> vector_int;
typedef vector<float> vector_float;
typedef vector<double> vector_double;
typedef vector<Point> vector_Point;
typedef vector<Point2f> vector_Point2f;
typedef vector<Vec2f> vector_Vec2f;
typedef vector<Vec3f> vector_Vec3f;
typedef vector<Vec4i> vector_Vec4i;
typedef vector<Rect> vector_Rect;
typedef vector<KeyPoint> vector_KeyPoint;
typedef vector<Mat> vector_Mat;
typedef vector<vector<Point> > vector_vector_Point;
typedef vector<vector<Point2f> > vector_vector_Point2f;
typedef vector<vector<Point3f> > vector_vector_Point3f;

static PyObject* failmsgp(const char *fmt, ...)
{
  char str[1000];

  va_list ap;
  va_start(ap, fmt);
  vsnprintf(str, sizeof(str), fmt, ap);
  va_end(ap);

  PyErr_SetString(PyExc_TypeError, str);
  return 0;
}

static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
    (0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);

static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
    return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}

static inline int* refcountFromPyObject(const PyObject* obj)
{
    return (int*)((size_t)obj + REFCOUNT_OFFSET);
}

class NumpyAllocator : public MatAllocator
{
public:
    NumpyAllocator() {}
    ~NumpyAllocator() {}
    
    void allocate(int dims, const int* sizes, int type, int*& refcount,
                  uchar*& datastart, uchar*& data, size_t* step)
    {
        int depth = CV_MAT_DEPTH(type);
        int cn = CV_MAT_CN(type);
        const int f = (int)(sizeof(size_t)/8);
        int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
                      depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
                      depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
                      depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
        int i;
        npy_intp _sizes[CV_MAX_DIM+1];
        for( i = 0; i < dims; i++ )
            _sizes[i] = sizes[i];
        if( cn > 1 )
        {
            if( _sizes[dims-1] == 1 )
                _sizes[dims-1] = cn;
            else
                _sizes[dims++] = cn;
        }
        PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
        if(!o)
            CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
        refcount = refcountFromPyObject(o);
        npy_intp* _strides = PyArray_STRIDES(o);
        for( i = 0; i < dims - (cn > 1); i++ )
            step[i] = (size_t)_strides[i];
        datastart = data = (uchar*)PyArray_DATA(o);
    }
    
    void deallocate(int* refcount, uchar* datastart, uchar* data)
    {
        if( !refcount )
            return;
        PyObject* o = pyObjectFromRefcount(refcount);
        Py_INCREF(o);
        Py_DECREF(o);
    }
};

NumpyAllocator g_numpyAllocator;
    
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };

static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true)
{
    if(!o || o == Py_None)
    {
        if( !m.data )
            m.allocator = &g_numpyAllocator;
        return true;
    }
        
    if( !PyArray_Check(o) )
    {
        failmsg("%s is not a numpy array", name);
        return false;
    }
    
    int typenum = PyArray_TYPE(o);
    int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
               typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S : 
               typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
               typenum == NPY_FLOAT ? CV_32F :
               typenum == NPY_DOUBLE ? CV_64F : -1;
    
    if( type < 0 )
    {
        failmsg("%s data type = %d is not supported", name, typenum);
        return false;
    }
    
    int ndims = PyArray_NDIM(o);
    if(ndims >= CV_MAX_DIM)
    {
        failmsg("%s dimensionality (=%d) is too high", name, ndims);
        return false;
    }
    
    int size[CV_MAX_DIM+1];
    size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
    const npy_intp* _sizes = PyArray_DIMS(o);
    const npy_intp* _strides = PyArray_STRIDES(o);
    
    for(int i = 0; i < ndims; i++)
    {
        size[i] = (int)_sizes[i];
        step[i] = (size_t)_strides[i];
    }
    
    if( ndims == 0 || step[ndims-1] > elemsize ) {
        size[ndims] = 1;
        step[ndims] = elemsize;
        ndims++;
    }
    
    if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
    {
        ndims--;
        type |= CV_MAKETYPE(0, size[2]);
    }
    
    if( ndims > 2 && !allowND )
    {
        failmsg("%s has more than 2 dimensions", name);
        return false;
    }
    
    m = Mat(ndims, size, type, PyArray_DATA(o), step);
    
    if( m.data )
    {
        m.refcount = refcountFromPyObject(o);
        m.addref(); // protect the original numpy array from deallocation
                    // (since Mat destructor will decrement the reference counter)
    };
    m.allocator = &g_numpyAllocator;
    return true;
}

static PyObject* pyopencv_from(const Mat& m)
{
    Mat temp, *p = (Mat*)&m;
    if(!p->refcount || p->allocator != &g_numpyAllocator)
    {
        pyopencv_to(Py_None, temp);
        m.copyTo(temp);
        p = &temp;
    }
    p->addref();
    return pyObjectFromRefcount(p->refcount);
}

static bool pyopencv_to(PyObject *o, Scalar& s, const char *name = "<unknown>")
{
    if(!o || o == Py_None)
        return true;
    if (PySequence_Check(o)) {
        PyObject *fi = PySequence_Fast(o, name);
        if (fi == NULL)
            return false;
        if (4 < PySequence_Fast_GET_SIZE(fi))
        {
            failmsg("Scalar value for argument '%s' is longer than 4", name);
            return false;
        }
        for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(fi); i++) {
            PyObject *item = PySequence_Fast_GET_ITEM(fi, i);
            if (PyFloat_Check(item) || PyInt_Check(item)) {
                s[i] = PyFloat_AsDouble(item);
            } else {
                failmsg("Scalar value for argument '%s' is not numeric", name);
                return false;
            }
        }
        Py_DECREF(fi);
    } else {
        if (PyFloat_Check(o) || PyInt_Check(o)) {
            s[0] = PyFloat_AsDouble(o);
        } else {
            failmsg("Scalar value for argument '%s' is not numeric", name);
            return false;
        }
    }
    return true;
}

static inline PyObject* pyopencv_from(const Scalar& src)
{
    return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
}

static PyObject* pyopencv_from(bool value)
{
    return PyBool_FromLong(value);
}

static bool pyopencv_to(PyObject* obj, bool& value, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    int _val = PyObject_IsTrue(obj);
    if(_val < 0)
        return false;
    value = _val > 0;
    return true;
}

static PyObject* pyopencv_from(size_t value)
{
    return PyLong_FromUnsignedLong((unsigned long)value);
}

static PyObject* pyopencv_from(int value)
{
    return PyInt_FromLong(value);
}

static bool pyopencv_to(PyObject* obj, int& value, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    value = (int)PyInt_AsLong(obj);
    return value != -1 || !PyErr_Occurred();
}

static PyObject* pyopencv_from(double value)
{
    return PyFloat_FromDouble(value);
}

static bool pyopencv_to(PyObject* obj, double& value, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    if(PyInt_CheckExact(obj))
        value = (double)PyInt_AS_LONG(obj);
    else
        value = PyFloat_AsDouble(obj);
    return !PyErr_Occurred();
}

static PyObject* pyopencv_from(float value)
{
    return PyFloat_FromDouble(value);
}

static bool pyopencv_to(PyObject* obj, float& value, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    if(PyInt_CheckExact(obj))
        value = (float)PyInt_AS_LONG(obj);
    else
        value = (float)PyFloat_AsDouble(obj);
    return !PyErr_Occurred();
}

static PyObject* pyopencv_from(const string& value)
{
    return PyString_FromString(value.empty() ? "" : value.c_str());
}

static bool pyopencv_to(PyObject* obj, string& value, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    char* str = PyString_AsString(obj);
    if(!str)
        return false;
    value = string(str);
    return true;
}

static inline bool pyopencv_to(PyObject* obj, Size& sz, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    return PyArg_Parse(obj, "ii", &sz.width, &sz.height) > 0;
}

static inline PyObject* pyopencv_from(const Size& sz)
{
    return Py_BuildValue("(ii)", sz.width, sz.height);
}

static inline bool pyopencv_to(PyObject* obj, Rect& r, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    return PyArg_Parse(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
}

static inline PyObject* pyopencv_from(const Rect& r)
{
    return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
}

static inline bool pyopencv_to(PyObject* obj, Range& r, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    if(PyObject_Size(obj) == 0)
    {
        r = Range::all();
        return true;
    }
    return PyArg_Parse(obj, "ii", &r.start, &r.end) > 0;
}

static inline PyObject* pyopencv_from(const Range& r)
{
    return Py_BuildValue("(ii)", r.start, r.end);
}

static inline bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    if(PyObject_Size(obj) == 0)
    {
        r = CV_WHOLE_SEQ;
        return true;
    }
    return PyArg_Parse(obj, "ii", &r.start_index, &r.end_index) > 0;
}
                                                
static inline PyObject* pyopencv_from(const CvSlice& r)
{
    return Py_BuildValue("(ii)", r.start_index, r.end_index);
}                                                    
                                                    
static inline bool pyopencv_to(PyObject* obj, Point& p, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    if(PyComplex_CheckExact(obj))
    {
        Py_complex c = PyComplex_AsCComplex(obj);
        p.x = saturate_cast<int>(c.real);
        p.y = saturate_cast<int>(c.imag);
        return true;
    }
    return PyArg_Parse(obj, "ii", &p.x, &p.y) > 0;
}

static inline bool pyopencv_to(PyObject* obj, Point2f& p, const char* name = "<unknown>")
{
    if(!obj || obj == Py_None)
        return true;
    if(PyComplex_CheckExact(obj))
    {
        Py_complex c = PyComplex_AsCComplex(obj);
        p.x = saturate_cast<float>(c.real);
        p.y = saturate_cast<float>(c.imag);
        return true;
    }
    return PyArg_Parse(obj, "ff", &p.x, &p.y) > 0;
}

static inline PyObject* pyopencv_from(const Point& p)
{
    return Py_BuildValue("(ii)", p.x, p.y);
}

static inline PyObject* pyopencv_from(const Point2f& p)
{
    return Py_BuildValue("(dd)", p.x, p.y);
}

static inline bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name = "<unknown>")
{
    if(!obj)
        return true;
    return PyArg_Parse(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
}

static inline PyObject* pyopencv_from(const Vec3d& v)
{
    return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
}

static inline PyObject* pyopencv_from(const Point2d& p)
{
    return Py_BuildValue("(dd)", p.x, p.y);
}

template<typename _Tp> struct pyopencvVecConverter
{
    static bool to(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
    {
        typedef typename DataType<_Tp>::channel_type _Cp;
        if(!obj)
            return true;
        if (PyArray_Check(obj))
        {
            Mat m;
            pyopencv_to(obj, m, name);
            m.copyTo(value);
        }
        if (!PySequence_Check(obj))
            return false;
        PyObject *seq = PySequence_Fast(obj, name);
        if (seq == NULL)
            return false;
        int i, j, n = (int)PySequence_Fast_GET_SIZE(seq);
        value.resize(n);
        
        int type = DataType<_Tp>::type;
        int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
        PyObject** items = PySequence_Fast_ITEMS(seq);
        
        for( i = 0; i < n; i++ )
        {
            PyObject* item = items[i];
            PyObject* seq_i = 0;
            PyObject** items_i = &item;
            _Cp* data = (_Cp*)&value[i];
            
            if( channels == 2 && PyComplex_CheckExact(item) )
            {
                Py_complex c = PyComplex_AsCComplex(obj);
                data[0] = saturate_cast<_Cp>(c.real);
                data[1] = saturate_cast<_Cp>(c.imag);
                continue;
            }
            if( channels > 1 )
            {
                if( PyArray_Check(obj))
                {
                    Mat src;
                    pyopencv_to(obj, src, name);
                    if( src.dims != 2 || src.channels() != 1 ||
                       ((src.cols != 1 || src.rows != channels) &&
                        (src.cols != channels || src.rows != 1)))
                        break;
                    Mat dst(src.rows, src.cols, depth, data);
                    src.convertTo(dst, type);
                    if( dst.data != (uchar*)data )
                        break;
                    continue;
                }
                
                seq_i = PySequence_Fast(item, name);
                if( !seq_i || (int)PySequence_Fast_GET_SIZE(seq_i) != channels )
                {
                    Py_XDECREF(seq_i);
                    break;
                }
                items_i = PySequence_Fast_ITEMS(seq_i);
            }
            
            for( j = 0; j < channels; j++ )
            {
                PyObject* item_ij = items_i[j];
                if( PyInt_Check(item_ij))
                {
                    int v = PyInt_AsLong(item_ij);
                    if( v == -1 && PyErr_Occurred() )
                        break;
                    data[j] = saturate_cast<_Cp>(v);
                }
                else if( PyFloat_Check(item_ij))
                {
                    double v = PyFloat_AsDouble(item_ij);
                    if( PyErr_Occurred() )
                        break;
                    data[j] = saturate_cast<_Cp>(v);
                }
                else
                    break;
            }
            Py_XDECREF(seq_i);
            if( j < channels )
                break;
        }
        Py_DECREF(seq);
        return i == n;
    }
    
    static PyObject* from(const vector<_Tp>& value)
    {
        if(value.empty())
            return PyTuple_New(0);
        Mat src((int)value.size(), DataType<_Tp>::channels, DataType<_Tp>::depth, (uchar*)&value[0]);
        return pyopencv_from(src);
    }
};


template<typename _Tp> static inline bool pyopencv_to(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
{
    return pyopencvVecConverter<_Tp>::to(obj, value, name);
}

template<typename _Tp> static inline PyObject* pyopencv_from(const vector<_Tp>& value)
{
    return pyopencvVecConverter<_Tp>::from(value);
}

static PyObject* pyopencv_from(const KeyPoint&);
static bool pyopencv_from(PyObject*,KeyPoint&,const char*);

template<typename _Tp> static inline bool pyopencv_to_generic_vec(PyObject* obj, vector<_Tp>& value, const char* name="<unknown>")
{
    if (!PySequence_Check(obj))
        return false;
    PyObject *seq = PySequence_Fast(obj, name);
    if (seq == NULL)
        return false;
    int i, n = (int)PySequence_Fast_GET_SIZE(seq);
    value.resize(n);
    
    PyObject** items = PySequence_Fast_ITEMS(seq);
    
    for( i = 0; i < n; i++ )
    {
        PyObject* item = items[i];
        if(!pyopencv_to(item, value[i], name))
            break;
    }
    Py_DECREF(seq);
    return i == n;
}

template<typename _Tp> static inline PyObject* pyopencv_from_generic_vec(const vector<_Tp>& value)
{
    int i, n = (int)value.size();
    PyObject* seq = PyTuple_New(n);
    for( i = 0; i < n; i++ )
    {        
        PyObject* item = pyopencv_from(value[i]);
        if(!item)
            break;
        PyTuple_SET_ITEM(seq, i, item);
    }
    if( i < n )
    {
        Py_DECREF(seq);
        return 0;
    }
    return seq;
}


template<typename _Tp> struct pyopencvVecConverter<vector<_Tp> >
{
    static bool to(PyObject* obj, vector<vector<_Tp> >& value, const char* name="<unknown>")
    {
        return pyopencv_to_generic_vec(obj, value, name);
    }
    
    static PyObject* from(const vector<vector<_Tp> >& value)
    {
        return pyopencv_from_generic_vec(value);
    }
};

template<> struct pyopencvVecConverter<Mat>
{
    static bool to(PyObject* obj, vector<Mat>& value, const char* name="<unknown>")
    {
        return pyopencv_to_generic_vec(obj, value, name);
    }
    
    static PyObject* from(const vector<Mat>& value)
    {
        return pyopencv_from_generic_vec(value);
    }
};

template<> struct pyopencvVecConverter<KeyPoint>
{
    static bool to(PyObject* obj, vector<KeyPoint>& value, const char* name="<unknown>")
    {
        return pyopencv_to_generic_vec(obj, value, name);
    }
    
    static PyObject* from(const vector<KeyPoint>& value)
    {
        return pyopencv_from_generic_vec(value);
    }
};


static inline bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name="<unknown>")
{
    if(!obj)
        return true;
    return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
}

static inline PyObject* pyopencv_from(const CvTermCriteria& src)
{
    return Py_BuildValue("(iid)", src.type, src.max_iter, src.epsilon);
}

static inline bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name="<unknown>")
{
    if(!obj)
        return true;
    return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
}

static inline PyObject* pyopencv_from(const TermCriteria& src)
{
    return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
}

static inline bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name="<unknown>")
{
    if(!obj)
        return true;
    return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;
}

static inline PyObject* pyopencv_from(const RotatedRect& src)
{
    return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
}

static inline PyObject* pyopencv_from(const Moments& m)
{
    return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
                         "m00", m.m00, "m10", m.m10, "m01", m.m01,
                         "m20", m.m20, "m11", m.m11, "m02", m.m02,
                         "m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
                         "mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
                         "mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
                         "nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
                         "nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "mu03", m.nu03);
}

static inline PyObject* pyopencv_from(const CvDTreeNode* node)
{
    double value = node->value;
    int ivalue = cvRound(value);
    return value == ivalue ? PyInt_FromLong(ivalue) : PyFloat_FromDouble(value);
}

#endif