#!/usr/bin/python """ This program is demonstration for face and object detection using haar-like features. The program finds faces in a camera image or video stream and displays a red box around them. Original C implementation by: ? Python implementation by: Roman Stanchak """ import sys from opencv.cv import * from opencv.highgui import * # Global Variables cascade = None storage = cvCreateMemStorage(0) cascade_name = "../../data/haarcascades/haarcascade_frontalface_alt.xml" input_name = "../c/lena.jpg" # Parameters for haar detection # From the API: # The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned # for accurate yet slow object detection. For a faster operation on real video # images the settings are: # scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, # min_size=<minimum possible face size min_size = cvSize(20,20) image_scale = 1.3 haar_scale = 1.2 min_neighbors = 2 haar_flags = 0 def detect_and_draw( img ): # allocate temporary images gray = cvCreateImage( cvSize(img.width,img.height), 8, 1 ) small_img = cvCreateImage((cvRound(img.width/image_scale), cvRound (img.height/image_scale)), 8, 1 ) # convert color input image to grayscale cvCvtColor( img, gray, CV_BGR2GRAY ) # scale input image for faster processing cvResize( gray, small_img, CV_INTER_LINEAR ) cvEqualizeHist( small_img, small_img ) cvClearMemStorage( storage ) if( cascade ): t = cvGetTickCount() faces = cvHaarDetectObjects( small_img, cascade, storage, haar_scale, min_neighbors, haar_flags, min_size ) t = cvGetTickCount() - t print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.)) if faces: for face_rect in faces: # the input to cvHaarDetectObjects was resized, so scale the # bounding box of each face and convert it to two CvPoints pt1 = cvPoint( int(face_rect.x*image_scale), int(face_rect.y*image_scale)) pt2 = cvPoint( int((face_rect.x+face_rect.width)*image_scale), int((face_rect.y+face_rect.height)*image_scale) ) cvRectangle( img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0 ) cvShowImage( "result", img ) if __name__ == '__main__': if len(sys.argv) > 1: if sys.argv[1].startswith("--cascade="): cascade_name = sys.argv[1][ len("--cascade="): ] if len(sys.argv) > 2: input_name = sys.argv[2] elif sys.argv[1] == "--help" or sys.argv[1] == "-h": print "Usage: facedetect --cascade=\"<cascade_path>\" [filename|camera_index]\n" sys.exit(-1) else: input_name = sys.argv[1] # the OpenCV API says this function is obsolete, but we can't # cast the output of cvLoad to a HaarClassifierCascade, so use this anyways # the size parameter is ignored cascade = cvLoadHaarClassifierCascade( cascade_name, cvSize(1,1) ) if not cascade: print "ERROR: Could not load classifier cascade" sys.exit(-1) if input_name.isdigit(): capture = cvCreateCameraCapture( int(input_name) ) else: capture = cvCreateFileCapture( input_name ) cvNamedWindow( "result", 1 ) if capture: frame_copy = None while True: frame = cvQueryFrame( capture ) if not frame: cvWaitKey(0) break if not frame_copy: frame_copy = cvCreateImage( cvSize(frame.width,frame.height), IPL_DEPTH_8U, frame.nChannels ) if frame.origin == IPL_ORIGIN_TL: cvCopy( frame, frame_copy ) else: cvFlip( frame, frame_copy, 0 ) detect_and_draw( frame_copy ) if( cvWaitKey( 10 ) >= 0 ): break else: image = cvLoadImage( input_name, 1 ) if image: detect_and_draw( image ) cvWaitKey(0) cvDestroyWindow("result")